[PDF] Chapitre 7 : Intégrales généralisées





Previous PDF Next PDF



Chapitre 7 : Intégrales généralisées

Or il existe des applications faisant intervenir des intégrales Si l'intégrale n'est pas convergente on dira qu'elle est divergente.



2.2 Quelques propriétés des intégrales définies

(Intégrale définie) On suppose que la fonction réelle f: [a b]. R est intégrable sur 2.3 Primitives: calcul d'intégrales définies.



Cours de mathématiques - Exo7

à savoir calculer des intégrales : à l'aide de primitives ou par les deux outils efficaces que sont l'intégration par parties et le changement de variable.



Résumé sur les Intégrales Impropres & exercices supplémentaires

Théor`eme 1 Une intégrale absolument convergente est convergente. 3. Intégrales Impropres des fonctions `a signe constant. Si f est négative sur I alors ?f 



Intégrales de fonctions de plusieurs variables

Cette définition est effective : elle permet de calculer des intégrales. 8.3 Calcul des intégrales. Pour calculer l'intégrale d'une fonction f sur un intervalle 



Intégrales impropres

Nous allons apprendre ici à calculer les intégrales de domaines non bornés soit parce que l'intervalle d'intégration est infini. (allant jusqu'à +? ou ??)



Calculs dintégrales

Calculer les intégrales suivantes : Exercice 10 Intégrales de Wallis ... essayer de reconnaître des sommes de Riemann puis calculer des intégrales.



Cours de mathématiques Chapitre 12 : Calcul Intégral

5 mai 2009 I.A Intégrale d'une fonction continue positive . ... I.C Propriétés de l'intégrale . ... I.D.3 Intégrales et inégalités .



TD 1 Intégrales généralisées

16 sept. 2016 Pour des fonctions plus générales les sommes S n'ont pas toujours de limite et donc l'intégrale n'existe pas toujours. Ainsi



Un cours sur les intégrales stochastiques (exposés 1 à 6)

et si It est le processus défini plus haut par l'intégrale stochastique des martingales du mouvement brownien à n dimensions comme intégrales.

Chapitre 7 : Int´egrales g´en´eralis´ees

1 Introduction

Nous avons pour le moment consid´er´e l"int´egration de fonctions continues par morceaux sur un intervalle [a,b] compact. Or il existe des applications faisant intervenirdes int´egrales sur des segments non compacts ou bien sur des fonctions non continues par morceaux sur [a,b], comme par exemple 0 e-xdx? 1 0 lnxdx? -∞sinx x... On parlera d"int´egrale g´en´eralis´eeou bien d"int´egrale impropre. D´efinition 7.1.Soita < bdes bornes dansR? {+∞}(resp.R? {-∞}) et soitfune fonction continue par morceaux sur[a,b[(resp.]a,b]). On dit quefest int´egrable sur[a,b[ (resp.]a,b]) si la limite lim

ξ→b?

a f(x)dx? resp.limξ→a? b f(x)dx? existe et est finie. On dit aussi que l"int´egrale g´en´eralis´ee ?b af(x)dxest convergente et on note cette limite?b a f(x)dx . Si l"int´egrale n"est pas convergente, on dira qu"elle est divergente. Ce statut est appel´e nature de l"int´egrale.

Par d´efinition, on a la proposition suivante.

Proposition 7.2.Soita < bdes bornes dans

R=R? {±∞}et soitfune fonction

continue sur[a,b[qui admetFcomme primitive. Alors?b af(x)dxest convergente si et seulement siFadmet une limite enbet alors?b a f(x)dx= limξ→bF(ξ)-F(a) := [F(x)]ba o`u le dernier terme est une notation par convention.

Le cas]a,b]est sym´etrique.

57

Int´egrales g´en´eralis´ees

On notera que ces d´efinitions sont coh´erentes : sifest continue par morceaux sur [a,b] compact, alors elle est int´egrable sur [a,b] mais aussi sur [a,b[ et ]a,b]. On peut ´etendre ce principe `a une situation qui a plusieursprobl`emes.

D´efinition 7.3.Soita < bdes bornes dans

R=R? {±∞}et soit

a=x1< x2< x3< ... < xp=b . Soitfune fonction continue par morceaux sur chacun des intervalles]xi,xi+1[. On dit que

fest int´egrable sur]a,b[sifest int´egrable au sens g´en´eralis´e sur chaque intervalle]xi,mi]

et[mi,xi+1[avecmi?]xi,xi+1[. On notera alors?b af(x)dxla somme de chaque int´egrale g´en´eralis´ee obtenue, conform´ement `a la relation de Chasles. !Comme pour l"´etude des s´eries, il ne faut pas confondre l"objet int´egrale g´en´eralis´ee?b af(x)dxqui pourra avoir le statut de la convergence ou de la divergence et le nombre?b af(x)dxqui n"existe que si l"int´egrale converge. Le probl`eme est qu"il n"y a pas de notation diff´erente cette fois-ci et c"est donc le contexte qui d´ecidera. Quand on demande la nature d"une int´egrale comme I=? 0e -x x-1lnxdx il faut commencer par rep´erer chacun des probl`emes : soit une borne infinie soit un endroit o`u la fonction n"est pas continue par morceaux (typiquement explosion vers±∞). PourI, il y a trois soucis : 0 (explosion du log), 1 (division par 0) et+∞(borne infinie). Puis on ´etudie la convergence `a chacun des points qui pose probl`eme. Si on trouve le moindre cas de

divergence `a un de ces points, on s"arrˆete car alors l"int´egrale est divergente. Si l"int´egrale

converge en tous ces points, alors on conclut que l"int´egrale est convergente.

Exemple :On voudrait consid´erer?∞

0e-xdx. Le seul probl`eme est la borne infinie car

x?→e-xest continue sur [0,+∞[. On calcule donc 0 e-xdx= [-e-x]ξ0= 1-e-ξ

dont la limiteξ→+∞converge et est finie. Donc l"int´egrale g´en´eralis´ee?∞

0e-xdxconverge

et 0 e-xdx= 1. Cette exemple montre que l"aire sous la courbe de la fonctione-xsur tout [0,+∞[ est finie, mˆeme si la surface n"est pas born´ee. 58

Int´egrales g´en´eralis´ees

Exemple :On voudrait consid´erer?1

01xdx. Commex?→1/xest continue sur ]0,1], le seul

souci est enx= 0. On a?1 ξ1 xdx= [lnx]1

ξ=-lnξ .

Quandξ→0, la limite explose vers +∞. L"int´egrale?1 01 xdxest donc divergente. On peut parfois faire l"abus de notation?1 01 xdx= +∞dans ce cas et parler d"aire infinie.

Exemple :On voudrait consid´erer?∞

0cosxdx. Le seul probl`eme est la borne infinie. On

a?ξ 0 cosxdx= [sinx]ξ0= sinξ qui n"a pas de limite quandξ→+∞. Donc non seulement?∞

0cosxdxest divergente, mais

on ne peut mˆeme pas parler d"aire infinie ou autre. Dans ce cas,?∞

0cosxdxn"a aucun sens

possible.

2 Exemples et propri´et´es fondamentales

Pour les int´egrales impropres, on va proc´eder comme pour les s´eries : on disposera d"une liste de cas types pour lesquels la nature de l"int´egrale est connue et on traitera les autres cas par des th´eor`emes de comparaisons ou des techniques plus fines.

2.1 Exponentielles

Une fonction du typex?-→eλxest continue surR. Le seul cas qui pourrait donner une int´egrale impropre est quand une des bornes est infinie. Proposition 7.4.Soitλ >0etaetbdansR. L"int´egrale impropre?∞ aeλxdxest diver- gente. L"int´egrale impropre?b -∞eλxdxest convergente. D´emonstration :Il suffit de voir qu"une primitive deeλxesteλx/λ. Donc b a eλxdx=1

λ?eλb-eλa?.

Sib→+∞, alorseλbtend vers +∞et l"int´egrale diverge vers +∞. Sia→ -∞, alorseλa

tend vers 0 et l"int´egrale converge vers 1

λeλb.?

Bien entendu, on fera attention au signe deλ. Par la sym´etriex?→ -x, on obtient que 59

Int´egrales g´en´eralis´ees

Proposition 7.5.Soitλ >0etaetbdansR. L"int´egrale impropre?∞ ae-λxdxest conver- gente. L"int´egrale impropre?b -∞e-λxdxest divergente.

Pour r´esum´e, si on int`egre une exponentielle, le seul soucis est en±∞. Soit c"est le

cˆot´e o`u l"exponentielle diverge et alors l"int´egrale diverge ´evidemment, soit c"est le cˆot´e o`u

l"exponentielle tend vers 0 et tout va bien. Notons aussi qu"une int´egrale du type?

Rexdx=?∞

-∞exdxest forc´ement divergente puisque fait intervenir les deuxextr´emit´es.

2.2 Puissances

On veut int´egrer une fonction du typeP(x)/Q(x) o`uPetQsont deux polynˆomes. On peut rencontrer deux types de probl`emes : une borne de l"int´egrale est infinie ou bien la fonction n"est pas d´efinie en un pointx0carQ(x0) = 0. Pour comprendre ce cas, on ne retiendra que les comportements types donn´es par les cas suivants. Proposition 7.6.Soitα >0et soita >0. L"int´egrale impropre a1 xαdx est convergente si et seulement siα >1. D´emonstration :Il suffit de voir que, siα?= 1, b a1 xαdx=11-α?

1bα-1-1aα-1?

Pourα <1, 1/bα-1=b1-αavec 1-α >0 et donc l"int´egrale explose quandb→+∞. A l"inverse, siα >1, 1/bα-1tend vers 0 et l"int´egrale converge.

Siα= 1, on a?b

a1 xαdx= lnb-lna qui tend vers +∞quandbtend vers +∞.? On s"aper¸coit que la bornea >0 n"a pas d"importance. On pourra juste parler d"int´e- grabilit´e ou non pr`es de+∞. Proposition 7.7.Soitα >0et soitb >0. L"int´egrale impropre b 01 xαdx est convergente si et seulement siα <1. 60

Int´egrales g´en´eralis´ees

D´emonstration :C"est la mˆeme que la proposition pr´ec´edente sauf qu"on regarde cette fois la limite quandatend vers 0. Dans ce cas,a1-αconvergera si et seulement siα <1.

Le log divergera toujours.?

En r´esum´e : 1/xest toujours le cas critique et n"est jamais int´egrable. Pour les autres, il faut se demander ce qui est mieux ou pire que 1/x. Par exemple 1/x2converge plus vite

vers 0 que 1/xen +∞donc est int´egrable pr`es de +∞. A l"inverse, il tend plus vite vers

+∞quandxtend vers 0+donc il n"est pas int´egrable pr`es de 0. !Seule l"int´egrabilit´e proche de +∞se comporte comme les s´eries de Rie- mann par le th´eor`eme de comparaison s´erie/int´egrale. Bien se rappeler que le probl`eme de l"int´egrabilit´e pr`es de 0 est quasiementl"inverse.

Par translation ou sym´etrie, on obtient les autres cas d"int´egrabilit´e de fonctions puis-

sances. Par exemple : -1 -∞1 x2dxest convergente -5 -∞1 xdxest divergente 2 11 ⎷x-1dxest convergente 2 11 x-2dxest divergente 3 01 (x-3)2dxest divergente

2.3 Le log

Dans le cas du log, comme il tend vers +∞en +∞, on s"attend `a avoir une aire infinie

sous la courbe. Du cˆot´e de 0, il faut voir qu"il tend vers +∞moins vite que tout puissance

dexet est donc logiquement int´egrable (nous allons voir ce genre de th´eor`eme bientˆot).

Proposition 7.8.Soitaetbstrictement positifs.

L"int´egrale

a lnxdxest divergente.

L"int´egrale

b 0 lnxdxest convergente. D´emonstration :Il suffit de voir qu"une primite du log estxlnx-x. Quandbtend vers +∞,blnb-b=b(lnb-1) tend vers +∞. Quandatend vers 0, le termealnatend aussi 61

Int´egrales g´en´eralis´ees

vers 0 (un polynˆome l"emporte sur le log) et donc la primite abien une limite quanda tend vers 0.?

2.4 Propri´et´es ´el´ementaires

La lin´earit´e de l"int´egrale et de la limite permettent deg´en´eraliser les propri´et´es ´el´emen-

taires des int´egrales aux int´egrales impropres. Voici des exemples d"´enonc´es (qu"on pourra

transposer de fa¸con ´evidente aux autres cas). Proposition 7.9.Soita?Ret soitb?]a,+∞]. Soitfetgdeux fonctions continues par morceaux sur[a,b[telles que les int´egrales impropres?b af(x)dxet?b ag(x)dxsoient conver- gentes et soientλetμdeux complexes. Alors?b aλf(x) +μg(x)dxest aussi convergente et?b a

λf(x) +μg(x)dx=λ?

b a f(x)dx+μ? b a g(x)dx .

D´emonstration :Il suffit de voir que

lim

ξ→b?

a

λf(x) +μg(x)dx=λlimξ→b?

a f(x)dx+μlimξ→b? a g(x)dx . De fa¸con classique on obtient le corollaire suivant. Corollaire 7.10.Soita?Ret soitb?]a,+∞]. Soitfetgdeux fonctions continues par morceaux sur[a,b[telles que l"int´egrale impropre?b af(x)dxest convergente et l"int´egrale?b ag(x)dxest divergente. Alors?b af(x) +g(x)dxest divergente. D´emonstration :Si l"int´egrale def+g´etait convergente, alors celle deg=f-(f+g) le serait aussi d"apr`es le r´esultat pr´ec´edent.? La d´efinition de la convergence des int´egrales impropres ayant plusieurs singularit´es donne directement que la relation de Chasles se g´en´eralise.

Proposition 7.11.Soienta < b < ctrois bornes de

Ret soitfune fonction telle que

les int´egrales g´en´eralis´ees?b af(x)dxet?c bf(x)dxconverge. Alors l"int´egrale?c af(x)dx converge aussi et?c a f(x)dx=? b a f(x)dx+? c b f(x)dx . 62

Int´egrales g´en´eralis´ees

Idem pour la monotonie de l"int´egrale.

Proposition 7.12.Soita?Ret soitb?]a,+∞]. Soitfetgdeux fonctions continues par morceaux sur[a,b[telles que les int´egrales impropres?b af(x)dxet?b ag(x)dxsoient convergentes. Sif≥gsur[a,b[alors?b af(x)dx≥?b ag(x)dx. D´emonstration :On ´ecrit d"abord la monotonie des int´egrales entreaetξ < bpuis on faitξ→b.? Notons aussi que par d´efinition de la limite dans les complexes et par d´efinition de l"int´egrale d"une fonction `a valeurs complexes, on a la proposition suivante. Proposition 7.13.Soitfune fonction continue par morceaux sur]a,b[`a valeurs com- plexes. Alorsfest int´egrable sur]a,b[si et seulement si ses parties r´eelles et imaginaires le sont. On a alors b a f(x)dx=? b a

Ref(x)dx+i?

b a

Imf(x)dx .

3 Fonctions localement de signe constant

Dans cette partie, nous allons voir des th´eor`emes nous permettant de nous ramener aux exemples fondamentaux par des comparaisons. Exactement comme pour les s´eries, ces

th´eor`emes ne pourront ˆetre appliqu´es que pour les fonctions positives (ou n´egatives) pr`es de

la zone posant probl`eme. Nous allons ´ecrire les r´esultatspour le cas de fonctions localement

positives et pour une borne posant probl`eme `a droite. Par sym´etries, les r´esultats seront encore valables dans le cas de fonctions localement n´egatives ou bien si on consid`ere la borne de gauche. !Redisons-le : comme pour les s´eries, il faudra toujours penser `a justifier que le signe est constant avant d"appliquer les r´esultats suivants. Proposition 7.14.Soita?Retb?]a,+∞]. Soitfune fonction continue par morceaux sur[a,b[et telle qu"il existem?[a,b[tel que f(x)≥0pour toutx?[m,b[.

Alors soit l"int´egrale impropre

?b af(x)dxest convergente, soit?ξ af(x)dxtend vers+∞ quandξ→b-. D´emonstration :Notons que la fonctionξ?→?ξ af(x)dxest croissante pourξ≥mcar on ne fait que rajouter de l"aire positive. Donc soit la fonction explose vers +∞, soit elle reste 63

Int´egrales g´en´eralis´ees

born´ee. Dans ce cas, toute suiten?→?ξn af(x)dxavecξn→ben croissant sera convergente (suite croissante major´ee). De plus toutes limites seront´egales (disons `a??R) car pour deux suites donn´ees, on pourra les combiner en une suite croissante qui convergera. Toutes les sous-suites d"une suite convergente convergent vers lamˆeme limite donc les deux suites de d´epart auront la mˆeme limite. Imaginons maintenant le cas o`uξn→bmais pas en croissant. Si la suite ne tend pas vers?, il y a une sous-suite qui reste ´eloign´ee de?. Mais de cette sous-suite, on peut extraire une sous-suite telle queξ?(n) est croissante et donc celle-ci tend vers?ce qui est absurde.? Proposition 7.15.Soita?Retb?]a,+∞]. Soitfetgdeux fonctions continues par morceaux sur[a,b[et telles qu"il existem?[a,b[tel que g(x)≥f(x)≥0pour toutx?[m,b[.

Si l"int´egrale

?b ag(x)dxest convergente, alors l"int´egrale?b af(x)dxest aussi convergente.

Si l"int´egrale?b

af(x)dxest divergente, alors l"int´egrale?b ag(x)dxest aussi divergente. D´emonstration :Pour toutξ?[m,b[, les int´egrales defetgsur [a,ξ] sont bien d´efinies et ?ξ?[m,b[,? a g(x)dx≥? a f(x)dx (monotonie de l"int´egrale de Riemann). Supposons que l"int´egrale?b af(x)dxsoit diver- gente. D"apr`es la proposition pr´ec´edente, comme les fonctions sont positives pr`es deb, on doit avoir lim

ξ→b?

a f(x)dx= +∞.

Mais alors par comparaison, lim

ξ→b?

ag(x)dxdiverge aussi vers +∞. L"autre assertion est la contrapos´ee de celle que l"on vient de d´emontrer.? Proposition 7.16.Soita?Retb?]a,+∞]. Soitfetgdeux fonctions continues par morceaux sur[a,b[et telles qu"il existem?[a,b[tel que g(x)≥0etf(x)≥0pour toutx?[m,b[. Supposons quef(x)≂g(x)quandx→b-, alors les int´egrales impropres?b af(x)dxet?b ag(x)dxont mˆeme nature. Supposons quef(x) =o(g(x))ou quef(x) =O(g(x))quandx→b-. Alors si l"int´egrale impropre?b af(x)dxdiverge alors?b ag(x)dxdiverge aussi et si?b ag(x)dxconverge, alors?b af(x)dxconverge aussi. 64

Int´egrales g´en´eralis´ees

D´emonstration :On applique exactement la mˆeme strat´egie que pour les s´eries. Il suffit

de montrer que les´equivalences ou petits et grands o impliquent des encadrements et ensuite appliquer le principe de comparaison pr´ec´edent. Par exemple, sif(x)≂g(x) quandx→b alors il existeδ >0 tel que, pour toutx?[b-δ,b[,1

Exemple :On consid`ere?

R1

1 +x2dx .

La fonctionx?→1/(1 +x2) est continue surR, donc les seuls soucis sont en±∞. On a 1

1+x2≂1x2quandx→ ±∞. Or 1/(1+x2) est positif et 1/x2est int´egrable en±∞car 2>1.

Donc 1/(1 +x2) est int´egrable en±∞et?

R1

1+x2dxconverge. Par ailleurs, en utilisant la

primitive connue, on a mˆeme que R1

1 +x2dx= limξ→+∞arctanξ-limξ→+∞arctanξ=π2-(-π2) =π .

Exemple :On consid`ere l"int´egrale

3 0x

2-2x+ 5

x2-1dx . Commex2-1 = (x+ 1)(x-1), la fonction int´egr´ee est continue sur [0,1[?]1,3] et le seul probl`eme est enx= 1. Enx= 1, on a x

2-x+ 2

x2-1≂x→11

2-2 + 51 + 11x-1=2x-1.

Pourx >1 proche de 1, les fonctions sont positives (car 2/(x-1) est positive). La fonction x?→1/(x-1) n"est pas int´egrable pr`es de 1+car diverge comme une puissance-1. Donc?3 0x

2-2x+5

x2-1dxest divergente et n"a pas de sens en tant que nombre. Notons qu"on n"a pas besoin de regarder le probl`eme de 1 -car une seule divergence suffit `a conclure.

Exemple :On consid`ere?∞

0 xe-xdx . Notons quex?→xe-xest positive et continue sur [0,+∞[. Le seul probl`eme est donc la borne infinie. On remarque quexe-x=o(e-x/2) quandx→+∞carx=o(ex/2). Ore-x/2 65

Int´egrales g´en´eralis´ees

quotesdbs_dbs9.pdfusesText_15
[PDF] contruction amateur d un vaurien - AS Vaurien France

[PDF] ecole nationale vete ecole nationale veterinaire de - VetAgro Sup

[PDF] Médecins Spécialistes

[PDF] Dermite du siège chez le sujet âgé

[PDF] Le Sud-Soudan, le 193e État du monde - 1jour1actucom

[PDF] des stages étudiants - cachemediaeducationgouvfr

[PDF] méthodologie et outils de l 'audit interne - CFPB

[PDF] Le montage d 'une opération immobilière - Aradel

[PDF] Gestion de projet Étapes/Jalonnement Outils

[PDF] Division audit interne - Institut Supérieur de Gestion de Tunis

[PDF] Epreuves

[PDF] La pollution des plages - (CREFECO)

[PDF] Des cartes pour comprendre le monde

[PDF] Des cartes pour comprendre le monde (Terminale) - Site Histoire

[PDF] Des cartes pour comprendre le monde - Lycée d 'Adultes