[PDF] Équations différentielles où λµ ∈ R. Correction de l'





Previous PDF Next PDF



Méthodes mathématiques pour physiciens I Corrigé série 10

13 déc. 2011 Remarque : Cette solution générale correspond au mouvement unidimensionnel uniformément accéléré. Exercice 1. ... est une équation de Bernoulli et ...



TDs de mécanique des fluides.

19 sept. 2019 En supposant le fluide parfait et en utilisant la formule de Bernoulli insta- tionnaire (on se reportera `a l'exercice 2.11) entre les deux ...



Mécanique des fluides

théorème de Bernoulli (formule de Torricelli) quel serait le débit initial ... À l'exercice 7



Exercices corrigés

Nous sommes dans les conditions d'applications du théorème de la convergence dominée. D'où le résultat. EXERCICE 1.4.– [Une autre application de la convergence 





Énergétique des écoulements Théorème de Bernoulli

25 nov. 2022 11 Vrai homogène à une pression (ou une énergie volumique). Écoulements parfaits. Exercice 2 : Débitmètre de Venturi. 1



MECANIQUE DES FLUIDES: Cours et exercices corrigés MECANIQUE DES FLUIDES: Cours et exercices corrigés

Les équations qui régissent ce type d'écoulement comme l'équation de continuité et l'équation de Bernoulli sont démontrés. Elles sont la base de plusieurs d' 



MECANIQUE DES FLUIDES: Cours et exercices corrigés MECANIQUE DES FLUIDES: Cours et exercices corrigés

Cours et exercices corrigés. Khalida BEKRENTCHIR. Docteur en Génie des Procédés 4.4.2 Equation de Bernoulli avec échange de travail…………………………………. 4.5 ...



Corrigé du test 1

3 déc. 2018 Exercice 1. Trouver la solution ... Sous quelle forme cherchera-t-on y pour transformer l'équation de Riccati en une équation de Bernoulli?



MECANIQUE DES FLUIDES. Cours et exercices corrigés MECANIQUE DES FLUIDES. Cours et exercices corrigés

2) Equation de Bernoulli pour un fluide parfait incompressible (avec échange de travail) : v u q. P. ZZg. PP. V. V . ) .(. ) .(. 1. ) (. 2. 1. 1. 2. 1. 2. 2. 1.



Équations différentielles

Résoudre les équations différentielles suivantes en trouvant une solution particulière par la méthode de Exercice 11 Équations de Bernoulli et Riccatti.



Corrigé du test 1

3 déc. 2018 Exercice 1. Trouver la solution générale de l'équation de Bernoulli y/ ?. 3. 4 y = (9x ? 3)y5 dans.



MECANIQUE DES FLUIDES. Cours et exercices corrigés

dynamique des fluides incompressibles parfaits en particulier



MECANIQUE DES FLUIDES: Cours et exercices corrigés

ce type d'écoulement comme l'équation de continuité et l'équation de Bernoulli sont démontrés. Elles sont la base de plusieurs d'applications en hydraulique 



Fiche exercices (avec corrigés) - Equations différentielles

Fiche exercices (avec corrigés) - Equations différentielles. Exercice 1. Donner l'ensemble des solutions des équations différentielles suivantes :.



-;==86E 45 92 fi375 45 1. 0 $ !:29A>5 $ /<@2?8;:> 48ffE=5:?85995>

Corrigé de la fiche de TD N° 2 -Analyse 2. Equations différentielles. I. Equations différentielles du 1er ordre. Exercice 1 (Equations différentielles à 



COURS hydraulique générale MEPA 2010

ponctuée par une série d'exercices permettant d'illustrer les concepts présentés. Les Après un rappel des équations de Bernoulli le paragraphe suivant ...



MECANIQUE DES FLUIDES I (Cours et Applications) Dr YOUCEFI

Ces quatre chapitres sont illustrés par des exercices résolus qui peuvent aider le Théorème de Bernoulli (écoulement sans échange de travail).



Exercices de Mécanique des Fluides

1- Enoncer le théorème de Bernoulli pour un fluide parfait en précisant la signification des différents termes. 2- Appliquer la relation de Bernoulli entre 



REMINI Boualem BENMAMAR Saida

EXERCICE Nº32. Expliquer la montée du niveau d'eau au point A de la figure ci-dessous. A. 1. CORRIGE. En appliquant le théorème de Bernoulli entre les 

Comment utiliser le théorème de Bernoulli ?

1- Enoncer le théorème de Bernoulli pour un fluide parfait en précisant la signification des différents termes. 2- Appliquer la relation de Bernoulli entre EXERCICE Nº32. Expliquer la montée du niveau d'eau au point A de la figure ci-dessous. A. 1. CORRIGE. En appliquant le théorème de Bernoulli entre les GP S M .

Quel est le paramètre p de la loi de Bernoulli ?

La loi de Bernoulli de paramètre p désigne une loi de probabilité discrète qui prend la valeur 1 avec la probabilité p et 0 avec la probabilité 1-p. Elle est donc définie sur l’univers ?? = {0,1}.

Qu'est-ce que la loi de Bernoulli ?

C’est l’une des lois de probabilités les plus simples, la loi de Bernoulli est un essentiel à connaitre quand on débute en probabilités La loi de Bernoulli de paramètre p désigne une loi de probabilité discrète qui prend la valeur 1 avec la probabilité p et 0 avec la probabilité 1-p. Elle est donc définie sur l’univers ?? = {0,1}.

Exo7

Équations différentielles

Fiche de Léa Blanc-Centi.

1 Ordre 1

Exercice 1Résoudre surRles équations différentielles suivantes:

1.y0+2y=x2(E1)

2.y0+y=2sinx(E2)

3.y0y= (x+1)ex(E3)

4.y0+y=xex+cosx(E4)

Déterminer toutes les fonctionsf:[0;1]!R, dérivables, telles que

8x2[0;1];f0(x)+f(x) =f(0)+f(1)

1.

Résoudre l"équationdifférentielle(x2+1)y0+2xy=3x2+1surR. Tracerdescourbesintégrales. Trouver

la solution vérifianty(0) =3. 2.

Résoudre l"équation dif férentielley0sinxycosx+1=0 sur]0;p[. Tracer des courbes intégrales.

Trouver la solution vérifianty(p4

) =1. de la constante :

1.y0(2x1x

)y=1 sur]0;+¥[

2.y0y=xkexp(x)surR, aveck2N

3.x(1+ln2(x))y0+2ln(x)y=1 sur]0;+¥[

On considère l"équation différentielle

y

0exey=a

Déterminer ses solutions, en précisant soigneusement leurs intervalles de définition, pour 1 1.a=0

2.a=1 (faire le changement de fonction inconnuez(x) =x+y(x))

Dans chacun des cas, construire la courbe intégrale qui passe par l"origine.

Pour les équations différentielles suivantes, trouver les solutions définies surRtout entier :

1.x2y0y=0(E1)

2.xy0+y1=0(E2)

Exercice 7Résoudre

1.y003y0+2y=0

2.y00+2y0+2y=0

3.y002y0+y=0

4.y00+y=2cos2x

On considèrey004y0+4y=d(x). Résoudre l"équation homogène, puis trouver une solution particulière

lorsqued(x) =e2x, puisd(x) =e2x. Donner la forme générale des solutions quandd(x) =12 ch(2x). Résoudre sur]0;p[l"équation différentielley00+y=cotanx, où cotanx=cosxsinx.

Résoudre les équations différentielles suivantes à l"aide du changement de variable suggéré.

1.x2y00+xy0+y=0, sur]0;+¥[, en posantx=et;

2.(1+x2)2y00+2x(1+x2)y0+my=0, surR, en posantx=tant(en fonction dem2R).

3 Pour aller plus loin

Exercice 11Équations de Bernoulli et Riccatti1.Équation de Bernoulli (a)

Montrer que l"équation de Bernoulli

y

0+a(x)y+b(x)yn=0n2Zn6=0;n6=1

se ramène à une équation linéaire par le changement de fonctionz(x) =1=y(x)n1. (b) T rouverles solutions de l"équation xy0+yxy3=0.

2.Équation de Riccati

(a) Montrer que si y0est une solution particulière de l"équation de Riccati y

0+a(x)y+b(x)y2=c(x)

alors la fonction définie paru(x) =y(x)y0(x)vérifie une équation de Bernoulli (avecn=2). (b) Résoudre x2(y0+y2) =xy1 en vérifiant d"abord quey0(x) =1x est une solution. 1. Montrer que toute solution sur Rdey0+ex2y=0 tend vers 0 en+¥. 2.

Montrer que toute solution sur Rdey00+ex2y=0 est bornée. (Indication :étudier la fonction auxiliaire

u(x) =y(x)2+ex2y0(x)2.) 1.

Résoudre sur ]0;+¥[l"équation différentiellex2y00+y=0 (utiliser le changement de variablex=et).

2. T rouvertoutes les fonctions de classe C1surRvérifiant

8x6=0;f0(x) =f1x

Indication pourl"exer cice2 NUne telle fonctionfest solution d"une équation différentielley0+y=c.Indication pourl"exer cice3 N1.xest solution particulière

2. cos est solution particulière Indication pourl"exer cice4 NSolution particulière : 1.12x 2. xk+1k+1exp(x) 3. lnx1+ln2(x)Indication pourl"exer cice5 N1. C"est une équation à variables séparées.

Indication pour

l"exer cice

6 N1.une infinité de solutions

2. une solution Indication pourl"exer cice8 NPour la fin: principe de superposition.

Indication pour

l"exer cice

9 NUtiliser la méthode de variation de la constante.

Indication pour

l"exer cice

11 N1.(a) Se ramener à

11nz0+a(x)z+b(x) =0.

(b)y=1plx2+2xouy=0. 2. (a)

Remplacer yparu+y0.

(b)y=1x +1xlnjxj+lxouy=1x .4

Correction del"exer cice1 N1.Il s"agit d"une équation dif férentiellelinéaire d"ordre 1, à coef ficientsconstants, a vecsecond membre.

Oncommenceparrésoudrel"équationhomogèneassociéey0+2y=0: lessolutionssontlesy(x)=le2x, l2R.

Il suffit ensuite de trouver une solution particulière de(E1). Le second membre étant polynomial de degré

2, on cherche une solution particulière de la même forme:

y

0(x) =ax2+bx+cest solution de(E1)

() 8x2R;y00(x)+2y0(x) =x2 () 8x2R;2ax2+(2a+2b)x+b+2c=x2 Ainsi, en identifiant les coefficients, on voit quey0(x) =12 x212 x+14 convient.

Les solutions de(E1)sont obtenues en faisant la somme de cette solution particulière et des solutions de

l"équation homogène: y(x) =12 x212 x+14 +le2x(x2R) oùlest un paramètre réel. 2.

Il s"agit d"une équation dif férentiellelinéaire d"ordre 1, à coef ficientsconstants, a vecsecond membre.

Les solutions de l"équation homogène associéey0+y=0 sont lesy(x) =lex,l2R.

Il suffit ensuite de trouver une solution particulière de(E2). Le second membre est cette fois une fonction

trigonométrique, on cherche une solution particulière sous la forme d"une combinaison linéaire de cos et

sin: y

0(x) =acosx+bsinxest solution de(E2)

() 8x2R;y00(x)+y0(x) =2sinx () 8x2R;(a+b)cosx+(a+b)sinx=2sinx Ainsi, en identifiant les coefficients, on voit quey0(x) =cosx+sinxconvient.

Les solutions de(E2)sont obtenues en faisant la somme de cette solution particulière et des solutions de

l"équation homogène: y(x) =cosx+sinx+lex(x2R) oùlest un paramètre réel. 3.

Les solutions de l"équation homogène associée y0y=0 sont lesy(x)=lex,l2R. On remarque que le

second membre est le produit d"une fonction exponentielle par une fonction polynomiale de degréd=1:

or la fonction exponentielle du second membre est la même (ex) que celle qui apparaît dans les solutions

de l"équation homogène. On cherche donc une solution particulière sous la forme d"un produit deexpar

une fonction polynomiale de degréd+1=2: y

0(x) = (ax2+bx+c)exest solution de(E3)

() 8x2R;y00(x)y0(x) = (x+1)ex () 8x2R;(2ax+b)ex= (x+1)ex Ainsi, en identifiant les coefficients, on voit quey0(x) = (12 x2+x)exconvient.

Les solutions de(E3)sont obtenues en faisant la somme de cette solution particulière et des solutions de

l"équation homogène: y(x) = (12 x2+x+l)ex(x2R) oùlest un paramètre réel. 5

4.Les solutions de l"équation homogène associée y0+y=0 sont lesy(x) =lex,l2R. On remarque que

le second membre est la somme d"une fonction polynomiale de degré 1, d"une fonction exponentielle

(différente deex) et d"une fonction trigonométrique. D"après le principe de superposition, on cherche

donc une solution particulière sous la forme d"une telle somme: y

0(x) =ax+b+mex+acosx+bsinxest solution de(E4)

() 8x2R;y00(x)+y0(x) =xex+cosx () 8x2R;ax+a+b+2mex+(a+b)cosx+(a+b)sinx=xex+cosx Ainsi, en identifiant les coefficients, on voit que y

0(x) =x112

ex+12 cosx+12 sinx convient.

Les solutions de(E4)sont obtenues en faisant la somme de cette solution particulière et des solutions de

l"équation homogène: y(x) =x112 ex+12 cosx+12 sinx+lex(x2R)

oùlest un paramètre réel.Correction del"exer cice2 NUne fonctionf:[0;1]!Rconvient si et seulement si

•fest dérivable •fest solution dey0+y=c •fvérifief(0)+f(1) =c(oùcest un réel quelconque)

Or les solutions de l"équation différentielley0+y=csont exactement lesf:x7!lex+c, oùl2R(en effet,

on voit facilement que la fonction constante égale àcest une solution particulière dey0+y=c). Évidemment

ces fonctions sont dérivables, etf(0)+f(1) =l(1+e1)+2c, donc la troisième condition est satisfaite si et

seulement sil(1+e1) =c. Ainsi les solutions du problème sont exactement les f(x) =l(ex1e1)

pourl2R.Correction del"exer cice3 N1.Comme le coef ficientde y0ne s"annule pas, on peut réécrire l"équation sous la forme

y 0+2xx

2+1y=3x2+1x

2+1 (a)

Les solutions de l"équation homogène associée sont les y(x) =leA(x), oùAest une primitive de

a(x) =2xx

2+1etl2R. Puisquea(x)est de la formeu0u

avecu>0, on peut choisirA(x) = ln(u(x))oùu(x) =x2+1. Les solutions sont donc lesy(x) =leln(x2+1)=lx 2+1. (b)

Il suf fitensuite de trouv erune solution particulière de l"équation a vecsecond membre: on remarque

quey0(x) =xconvient. (c)

Les solutions sont obtenues en f aisantla somme:

y(x) =x+lx

2+1(x2R)

oùlest un paramètre réel. 6 (d)y(0) =3 si et seulement sil=3. La solution cherchée est doncy(x) =x+3x 2+1. Voici les courbes intégrales pourl=1;0;:::;5.011 2.

On commence par remarquer que y0(x) =cosxest une solution particulière. Pour l"équation homogène:

sur l"intervalle considéré, le coefficient dey0ne s"annule pas, et l"équation se réécrit

y

0cosxsinxy=0

Les solutions sont lesy(x) =leA(x), oùl2RetAest une primitive dea(x) =cosxsinx. Puisquea(x)est de la forme u0u avecu>0, on peut choisirA(x)=ln(u(x))avecu(x)=sinx. Les solutions de l"équation sont donc lesy(x) =leln(sinx)=lsinx. Finalement, les solutions de l"équation sont les y(x) =cosx+lsinx oùlest un paramètre réel. 3. On a y(p4 ) =1()cosp4 +lsinp4 =1()p2 2 (1+l) =1()l=2p2 1

La solution cherchée esty(x) =cosx+2p2

1 sinx Voici les courbes intégrales pourl=2;1;0;:::;4 et2p2

1 (en gras).

7 01p1

Correction de

l"exer cice

4 N1.y0(2x1x

)y=1 sur]0;+¥[ (a)Résolution de l"équation homogèney0(2x1x )y=0.

Une primitive dea(x)=2x1x

estA(x)=x2lnx, donc les solutions de l"équation homogène sont lesy(x) =lexp(x2lnx) =l1x exp(x2), pourlune constante réelle quelconque. (b)Recherche d"une solution particulière.

Nous allons utiliser la méthode de variation de la constante pour trouver une solution particulière à

l"équationy0(2x1x )y=1. On cherche une telle solution sous la formey0(x) =l(x)1x exp(x2) oùx7!l(x)est maintenant une fonction.

On calcule d"abord

y

00(x) =l0(x)1x

exp(x2)+l(x) 1x 2+2 exp(x2)

Maintenant :

y

0est solution dey0(2x+1x

)y=1 ()y00(2x1x )y0=1 ()l0(x)xexp(x2)+l(x) 1x 2+2 exp(x2)(2x1x )l(x)1x exp(x2) =1 ()l0(x)1x exp(x2) =1 cela doit se simplifier ! ()l0(x) =xexp(x2)

Ainsi on peut prendrel(x) =12

exp(x2), ce qui fournit la solution particulière : y

0(x) =l(x)1x

exp(x2) =12 exp(x2)1x exp(x2) =12x Pour se rassurer, on n"oublie pas de vérifier que c"est bien une solution ! (c)Solution générale. L"ensemble des solutions s"obtient par la somme de la solution particulière avec les solutions de l"équation homogène. Autrement dit, les solutions sont les : y(x) =12x+l1x exp(x2) (l2R): 8

2.y0y=xkexp(x)surR, aveck2N

(a)Résolution de l"équation homogèney0y=0. Les solutions de l"équation homogène sont lesy(x) =lexp(x),l2R. (b)Recherche d"une solution particulière. On cherche une solution particulière sous la formey0(x) =l(x)exp(x)oùx7!l(x)est maintenantquotesdbs_dbs6.pdfusesText_12
[PDF] equation de bernoulli pdf

[PDF] équation de cambridge

[PDF] équation de cambridge demande de monnaie

[PDF] equation de chaleur 1d

[PDF] equation de droite et systeme seconde

[PDF] equation de droite et systeme seconde exercices corrigés

[PDF] equation de droite vecteur directeur

[PDF] équation de l'offre et de la demande

[PDF] equation de la demande

[PDF] equation de la droite d ajustement calculatrice

[PDF] equation de la droite des ordonnées

[PDF] equation de la fonction de consommation affine

[PDF] equation de la physique mathematique exercices corrigés

[PDF] equation de slutsky

[PDF] equation dérivée partielle d'ordre 2