[PDF] Exo7 - Exercices de mathématiques





Previous PDF Next PDF



EQUATIONS DIFFERENTIELLES

2) Equations à coefficients constants II : Equations différentielles linéaires du second ordre. 1) Définition ... Solution avec second membre 1 + x.



Résolution dune équation différentielle du premier ordre à

On se place dans le cas particulier où le second membre de cette équation est constant. Cette équation peut s'écrire sous la forme : df dt. +. 1.



Les équations différentielles en physique

premier ordre est : dy dt. + y x. = B x. (De la forme y'+ ay = b en maths) avec ? un temps caractéristique



Équations différentielles

1. Il s'agit d'une équation différentielle linéaire d'ordre 1 à coefficients constants



- FICHE DE COURS CHAPITRE SUR LES EQUATIONS

Equation différentielle linéaire du second ordre (E) AVEC second membre à coefficients constants : une équation du type : ax''(t) + b x' (t) + c x(t) = d 



Équations différentielles

13 avr. 2021 1 Équation différentielle linéaire du premier ordre. 2. 1.1 Définition . ... constant sans second membre ou incomplète en x.



EDL à coefficients constants

résoudre une équation différentielle linéaire d'ordre 1 ou 2 `a coefficients constants avec seconds membres constants trigonométriques ou exponentiel.



Résolution des équations différentielles linéaires du second ordre `a

`a coefficients constants 1.1 L'équation avec second membre ... 1Aujourd'hui il n'y a plus du tout d'équations du second ordre au programme de TS



Équations différentielles appliquées à la physique

19 juin 2017 On résout l'équation homogène c'est à dire sans second membre : ... l'équation de premier ordre sous la forme : y? +. 1 ? y = b avec ? = 1.



Cours de mathématiques - Exo7

Équation différentielle linéaire du second ordre à coefficients constants général de l'équation différentielle linéaire d'ordre 1 avec second membre :.



Chapitre 5 : Équations différentielles

>Chapitre 5 : Équations différentielleshttps://www i2m univ-amu fr/ /index_files/PortailCurie_Maths1_C · Fichier PDF



Exo7 - Exercices de mathématiques

>Exo7 - Exercices de mathématiquesexo7 emath fr/fic pdf /fic00165 pdf · Fichier PDF



Exo7 - Cours de mathématiques

>Exo7 - Cours de mathématiques



3 Équation différentielle linéaire dordre 1 à coefficients constants

>3 Équation différentielle linéaire d'ordre 1 à coefficients constants perso numericable fr/ /Equation_Differentielle/cours_ED04_6_7 · Fichier PDF



Exo7 - Cours de mathématiques

>Exo7 - Cours de mathématiquesexo7 emath fr/cours/ch_equadiff pdf · Fichier PDF



4 Équation différentielle linéaire dordre 1 à coefficients constants

>4 Équation différentielle linéaire d'ordre 1 à coefficients constants perso numericable fr/ /Equation_Differentielle/cours_ED04_8_1 · Fichier PDF



Chapitre 1 : Equations Différentielles dans R

Équation différentielleType d'équation

Comment appelle-t-on une équation différentielle linéaire du premier ordre?

Equations différentielles linéaires du premier ordre 1. Définition On appelle équation différentielle du premier ordre à coefficients constants toute équation (E) de la forme : a. y’ + b.

Quelle est la différence entre une équation différentielle d’ordre 1 et 2 ?

Nous avons parlé en introduction des équations différentielles d’ordre 1 et 2 : une équation différentielle est dite d’ordre 1 quand l’équation comporte uniquement sa dérivée première, pas ses dérivées supérieures. Comme tu le vois il y a y’ à chaque fois, mais pas y" ou y"’ par exemple.

Qu'est-ce que l'équation différentielle du premier ordre à coefficients constants?

On appelle équation différentielle du premier ordre à coefficients constants toute équation (E) de la forme : a. y’ + b. y= f(x) où aet bsont des nombres réels (a? 0), yet fsont des fonctions numériques de variable réelle x. L’équation : a .

Exo7

Équations différentielles

Fiche de Léa Blanc-Centi.

1 Ordre 1

Exercice 1Résoudre surRles équations différentielles suivantes:

1.y0+2y=x2(E1)

2.y0+y=2sinx(E2)

3.y0y= (x+1)ex(E3)

4.y0+y=xex+cosx(E4)

Déterminer toutes les fonctionsf:[0;1]!R, dérivables, telles que

8x2[0;1];f0(x)+f(x) =f(0)+f(1)

1.

Résoudre l"équationdifférentielle(x2+1)y0+2xy=3x2+1surR. Tracerdescourbesintégrales. Trouver

la solution vérifianty(0) =3. 2.

Résoudre l"équation dif férentielley0sinxycosx+1=0 sur]0;p[. Tracer des courbes intégrales.

Trouver la solution vérifianty(p4

) =1. de la constante :

1.y0(2x1x

)y=1 sur]0;+¥[

2.y0y=xkexp(x)surR, aveck2N

3.x(1+ln2(x))y0+2ln(x)y=1 sur]0;+¥[

On considère l"équation différentielle

y

0exey=a

Déterminer ses solutions, en précisant soigneusement leurs intervalles de définition, pour 1 1.a=0

2.a=1 (faire le changement de fonction inconnuez(x) =x+y(x))

Dans chacun des cas, construire la courbe intégrale qui passe par l"origine.

Pour les équations différentielles suivantes, trouver les solutions définies surRtout entier :

1.x2y0y=0(E1)

2.xy0+y1=0(E2)

Exercice 7Résoudre

1.y003y0+2y=0

2.y00+2y0+2y=0

3.y002y0+y=0

4.y00+y=2cos2x

On considèrey004y0+4y=d(x). Résoudre l"équation homogène, puis trouver une solution particulière

lorsqued(x) =e2x, puisd(x) =e2x. Donner la forme générale des solutions quandd(x) =12 ch(2x). Résoudre sur]0;p[l"équation différentielley00+y=cotanx, où cotanx=cosxsinx.

Résoudre les équations différentielles suivantes à l"aide du changement de variable suggéré.

1.x2y00+xy0+y=0, sur]0;+¥[, en posantx=et;

2.(1+x2)2y00+2x(1+x2)y0+my=0, surR, en posantx=tant(en fonction dem2R).

3 Pour aller plus loin

Exercice 11Équations de Bernoulli et Riccatti1.Équation de Bernoulli (a)

Montrer que l"équation de Bernoulli

y

0+a(x)y+b(x)yn=0n2Zn6=0;n6=1

se ramène à une équation linéaire par le changement de fonctionz(x) =1=y(x)n1. (b) T rouverles solutions de l"équation xy0+yxy3=0.

2.Équation de Riccati

(a) Montrer que si y0est une solution particulière de l"équation de Riccati y

0+a(x)y+b(x)y2=c(x)

alors la fonction définie paru(x) =y(x)y0(x)vérifie une équation de Bernoulli (avecn=2). (b) Résoudre x2(y0+y2) =xy1 en vérifiant d"abord quey0(x) =1x est une solution. 1. Montrer que toute solution sur Rdey0+ex2y=0 tend vers 0 en+¥. 2.

Montrer que toute solution sur Rdey00+ex2y=0 est bornée. (Indication :étudier la fonction auxiliaire

u(x) =y(x)2+ex2y0(x)2.) 1.

Résoudre sur ]0;+¥[l"équation différentiellex2y00+y=0 (utiliser le changement de variablex=et).

2. T rouvertoutes les fonctions de classe C1surRvérifiant

8x6=0;f0(x) =f1x

Indication pourl"exer cice2 NUne telle fonctionfest solution d"une équation différentielley0+y=c.Indication pourl"exer cice3 N1.xest solution particulière

2. cos est solution particulière Indication pourl"exer cice4 NSolution particulière : 1.12x 2. xk+1k+1exp(x) 3. lnx1+ln2(x)Indication pourl"exer cice5 N1. C"est une équation à variables séparées.

Indication pour

l"exer cice

6 N1.une infinité de solutions

2. une solution Indication pourl"exer cice8 NPour la fin: principe de superposition.

Indication pour

l"exer cice

9 NUtiliser la méthode de variation de la constante.

Indication pour

l"exer cice

11 N1.(a) Se ramener à

11nz0+a(x)z+b(x) =0.

(b)y=1plx2+2xouy=0. 2. (a)

Remplacer yparu+y0.

(b)y=1x +1xlnjxj+lxouy=1x .4

Correction del"exer cice1 N1.Il s"agit d"une équation dif férentiellelinéaire d"ordre 1, à coef ficientsconstants, a vecsecond membre.

Oncommenceparrésoudrel"équationhomogèneassociéey0+2y=0: lessolutionssontlesy(x)=le2x, l2R.

Il suffit ensuite de trouver une solution particulière de(E1). Le second membre étant polynomial de degré

2, on cherche une solution particulière de la même forme:

y

0(x) =ax2+bx+cest solution de(E1)

() 8x2R;y00(x)+2y0(x) =x2 () 8x2R;2ax2+(2a+2b)x+b+2c=x2 Ainsi, en identifiant les coefficients, on voit quey0(x) =12 x212 x+14 convient.

Les solutions de(E1)sont obtenues en faisant la somme de cette solution particulière et des solutions de

l"équation homogène: y(x) =12 x212 x+14 +le2x(x2R) oùlest un paramètre réel. 2.

Il s"agit d"une équation dif férentiellelinéaire d"ordre 1, à coef ficientsconstants, a vecsecond membre.

Les solutions de l"équation homogène associéey0+y=0 sont lesy(x) =lex,l2R.

Il suffit ensuite de trouver une solution particulière de(E2). Le second membre est cette fois une fonction

trigonométrique, on cherche une solution particulière sous la forme d"une combinaison linéaire de cos et

sin: y

0(x) =acosx+bsinxest solution de(E2)

() 8x2R;y00(x)+y0(x) =2sinx () 8x2R;(a+b)cosx+(a+b)sinx=2sinx Ainsi, en identifiant les coefficients, on voit quey0(x) =cosx+sinxconvient.

Les solutions de(E2)sont obtenues en faisant la somme de cette solution particulière et des solutions de

l"équation homogène: y(x) =cosx+sinx+lex(x2R) oùlest un paramètre réel. 3.

Les solutions de l"équation homogène associée y0y=0 sont lesy(x)=lex,l2R. On remarque que le

second membre est le produit d"une fonction exponentielle par une fonction polynomiale de degréd=1:

or la fonction exponentielle du second membre est la même (ex) que celle qui apparaît dans les solutions

de l"équation homogène. On cherche donc une solution particulière sous la forme d"un produit deexpar

une fonction polynomiale de degréd+1=2: y

0(x) = (ax2+bx+c)exest solution de(E3)

() 8x2R;y00(x)y0(x) = (x+1)ex () 8x2R;(2ax+b)ex= (x+1)ex Ainsi, en identifiant les coefficients, on voit quey0(x) = (12 x2+x)exconvient.

Les solutions de(E3)sont obtenues en faisant la somme de cette solution particulière et des solutions de

l"équation homogène: y(x) = (12 x2+x+l)ex(x2R) oùlest un paramètre réel. 5

4.Les solutions de l"équation homogène associée y0+y=0 sont lesy(x) =lex,l2R. On remarque que

le second membre est la somme d"une fonction polynomiale de degré 1, d"une fonction exponentielle

(différente deex) et d"une fonction trigonométrique. D"après le principe de superposition, on cherche

donc une solution particulière sous la forme d"une telle somme: y

0(x) =ax+b+mex+acosx+bsinxest solution de(E4)

() 8x2R;y00(x)+y0(x) =xex+cosx () 8x2R;ax+a+b+2mex+(a+b)cosx+(a+b)sinx=xex+cosx Ainsi, en identifiant les coefficients, on voit que y

0(x) =x112

ex+12 cosx+12 sinx convient.

Les solutions de(E4)sont obtenues en faisant la somme de cette solution particulière et des solutions de

l"équation homogène: y(x) =x112 ex+12 cosx+12 sinx+lex(x2R)

oùlest un paramètre réel.Correction del"exer cice2 NUne fonctionf:[0;1]!Rconvient si et seulement si

•fest dérivable •fest solution dey0+y=c •fvérifief(0)+f(1) =c(oùcest un réel quelconque)

Or les solutions de l"équation différentielley0+y=csont exactement lesf:x7!lex+c, oùl2R(en effet,

on voit facilement que la fonction constante égale àcest une solution particulière dey0+y=c). Évidemment

ces fonctions sont dérivables, etf(0)+f(1) =l(1+e1)+2c, donc la troisième condition est satisfaite si et

seulement sil(1+e1) =c. Ainsi les solutions du problème sont exactement les f(x) =l(ex1e1)

pourl2R.Correction del"exer cice3 N1.Comme le coef ficientde y0ne s"annule pas, on peut réécrire l"équation sous la forme

y 0+2xx

2+1y=3x2+1x

2+1 (a)

Les solutions de l"équation homogène associée sont les y(x) =leA(x), oùAest une primitive de

a(x) =2xx

2+1etl2R. Puisquea(x)est de la formeu0u

avecu>0, on peut choisirA(x) = ln(u(x))oùu(x) =x2+1. Les solutions sont donc lesy(x) =leln(x2+1)=lx 2+1. (b)

Il suf fitensuite de trouv erune solution particulière de l"équation a vecsecond membre: on remarque

quey0(x) =xconvient. (c)

Les solutions sont obtenues en f aisantla somme:

y(x) =x+lx

2+1(x2R)

oùlest un paramètre réel. 6 (d)y(0) =3 si et seulement sil=3. La solution cherchée est doncy(x) =x+3x 2+1. Voici les courbes intégrales pourl=1;0;:::;5.011 2.

On commence par remarquer que y0(x) =cosxest une solution particulière. Pour l"équation homogène:

sur l"intervalle considéré, le coefficient dey0ne s"annule pas, et l"équation se réécrit

y

0cosxsinxy=0

Les solutions sont lesy(x) =leA(x), oùl2RetAest une primitive dea(x) =cosxsinx. Puisquea(x)est de la forme u0u avecu>0, on peut choisirA(x)=ln(u(x))avecu(x)=sinx. Les solutions de l"équation sont donc lesy(x) =leln(sinx)=lsinx. Finalement, les solutions de l"équation sont les y(x) =cosx+lsinx oùlest un paramètre réel. 3. On a y(p4 ) =1()cosp4 +lsinp4 =1()p2 2 (1+l) =1()l=2p2 1

La solution cherchée esty(x) =cosx+2p2

1 sinx Voici les courbes intégrales pourl=2;1;0;:::;4 et2p2

1 (en gras).

7 01p1

Correction de

l"exer cice

4 N1.y0(2x1x

)y=1 sur]0;+¥[ (a)Résolution de l"équation homogèney0(2x1x )y=0.

Une primitive dea(x)=2x1x

estA(x)=x2lnx, donc les solutions de l"équation homogène sont lesy(x) =lexp(x2lnx) =l1x exp(x2), pourlune constante réelle quelconque. (b)Recherche d"une solution particulière.

Nous allons utiliser la méthode de variation de la constante pour trouver une solution particulière à

l"équationy0(2x1x )y=1. On cherche une telle solution sous la formey0(x) =l(x)1xquotesdbs_dbs14.pdfusesText_20
[PDF] equation differentielle ordre 1 exemple

[PDF] equation differentielle ordre 1 non lineaire

[PDF] équation différentielle premier ordre avec second membre exercice corrigé

[PDF] équation différentielle premier ordre physique

[PDF] équation différentielle résolution

[PDF] equation differentielle resumé

[PDF] equation differentielle stochastique et application

[PDF] equation differentielle stochastique exercices corrigés

[PDF] equation differentielle stochastique finance

[PDF] equation droite excel

[PDF] equation du profit

[PDF] équation du second degré à une inconnue

[PDF] equation du second degré avec paramètre m

[PDF] equation et inequation exercices corrigés pdf

[PDF] équation frontière des possibilités de production