[PDF] Least-Squares Rigid Motion Using SVD by Olga Sorkine-Hornung





Previous PDF Next PDF



Transformations géométriques : rotation et translation

une rotation autour de l'origine d'un angle θ antihoraire. • Opération linéaire* : multiplication de matrice. 179 x y θ. 2. 1 cos sin.



ROBOTIQUE - ENSTA Bretagne

La matrice (vecteur) de translation opère selon l'axe 0 y . La matrice de rotation (d'angle nul) est telle que : 0. 1. 0. 1.



Chapitre 5 : Transformations et changements de repères - Master

// compose avec une matrice de translation. (multiplication à droite) m1. rotate ( angle axisX



Rappels mathématiques Transformations géométriques 2D et 3D 1

Si on tourne ce repère de l'angle de la rotation ces vecteurs se confondent avec les axes. Si l'on considère les deux vecteurs colonnes de la sous matrice et.



IMN428 - Chapitre 2 - Transformations géométriques

22‏/01‏/2014 d'échelle suivi d'une translation est différent d'une translation suivie ... original la matrice de passage devient une matrice de rotation :.



Comparaison de décompositions de la matrice homographique et

03‏/09‏/2018 The precision of the transformation is evaluated on the translation and the rotation part. The decomposition of the essential matrix appears to ...



Chapitre II - Transformations de corps rigides

matrice de rotation 3 x 3 suivie d'une translation. Bref la rotation peut être interprétée indépendamment de la translation. Page 31. 31. Interpolation de ...



Chapitre V: Le groupe des déplacements géométriques

Cette relation permet donc d'exprimer toute matrice de translation en fonction des matrices composantes de . 2 Les rotations. Une rotation peut être définie 



Chapitre 5 Transformations linéaires

b) La translation ta : R3 → R3 n'est pas une transformation linéaire. En On construit la matrice de rotation dans le systeme de coordonnees defini par B2.



Exponentielle de matrices: cas des rotations et des déplacements

17‏/06‏/2003 la matrice de rotation d'angle θ. On peut le voir simplement ... En utilisant la conjugaison par la matrice de la translation de vecteur. −− ...



Transformations géométriques : rotation et translation

Correspond à déplacer un point (vecteur) avec une rotation autour de l'origine





IMN428 - Chapitre 2 - Transformations géométriques

22 janv. 2014 mouvements (translation) des informations sur les surfaces ... z



Untitled

matrix to rotation and translation? Page 7. [ ]×. = E t R. = t E 0. T. : Left nullspace of the essential matrix is the epipole in image 2.



Synthèse dimages Outils mathématiques de base

4 sept. 2020 Point + Vecteur = Point (translation du point). • Point + Point = rien ! ... Matrice de rotation autour de l'axe des z :.



ENSTA Bretagne

3.3 Translation et rotation. 3.4 Matrices de transformation homogène. 3.5 Obtention du modèle géométrique. 3.6 Paramètres de Denavit-Hartenberg modifié.



Finding the exact rotation between two images independently of the

translation and rotation cause fundamentally different flow fields on the tion that involves the fundamental or essential matrix between the two images.



1 Chap 4

on multiplie les matrices représentant les transformations élémentaires. ? Exemple: Rotation autour d'un axe // à l 'axe x. ? Matrice 



Rotations and rotation matrices

vector by a rotation matrix R and addition of a translation vector t. For this purpose we work in an orthogonal Cartesian system in a?ngstro?ms: conversion 



Rotation Matrices and Translation Vectors in Crystallography

Rotation matrices (R) and translation vectors (t) are very powerful descriptions of the symmetry within the crystal and give aid in origin specification in 



Geometric transformations in 3D and coordinate frames

matrix tistranslation vectortransformationfollowedbytranslation Using homogeneous Notes: 1 general 2 Invert an affinetransformationusinga4x4 matrixcoordinates inverse An inverseaffinetransformationis also anaffinetransformation 14 using ffine homo Translation Linear •Scale Linear •Rotation Lineartransform transform transform tran gen ation ation



Combining translation and rotation

translation: 3 units right reflection across the y-axis rotation 90° clockwise about the origin translation: 1 unit right and 3 units uprotation 180° about the origin Create your own worksheets like this one with Infinite Algebra 2 Free trial available at KutaSoftware com



Lecture 3: Coordinate Systems and Transformations

The rststepistousetranslationtoreducetheproblemtothatof rotationabouttheorigin: =T(p0)RT( p0): To ndtherotationmatrixRforrotationaroundthevectoru we rstalignuwiththezaxis usingtworotations xand y Thenwecanapply rotationof aroundthez-axisandafterwardsundothealignments thus =Rx( x)Ry( y)Rz( )Ry( y)Rx( x):



ROTATIONS AND REFLECTIONS USING MATRICES translation

ROTATIONS AND REFLECTIONS USING MATRICES Earlier in your course you looked at a variety of ways in which a shape could be moved around on squared paper We studied: translation reflection rotation In each of these the size of the original shape remained fixed



2D Transformations - Department of Computer Science and

The standard rotation matrix is used to rotate about the origin (00) cos(?) -sin(?) 0 Affine matrix = translation x shearing x scaling x rotation



Searches related to matrice rotation + translation PDF

Rotationofskewsymmetricmatrices ForanyrotationmatrixR: ?T RwR= ations ? (Rw) 3 inR The (described (described by {A}) to its new position by{B}) vector inthesecondpositionorientation 10 SE () 3 = http://www seas upenn edu/~meam520/notes02/RigidBodyMotion3 pdf 12 SE(3)isaLiegroup SE(3)satisfiesthefouraxiomsthatmustbesatisfiedbytheelementsofan

What is the transformation matrix for translation and rotation?

Note that translations and rotations do not commute! If the operations are applied successively, each is transformed to ( 3. 33) ( 3. 34) ( 3. 35) represents a rotation followed by a translation. The matrix will be referred to as a homogeneous transformation matrix.

What is rotation matrix?

The rotation matrix, or undefined if the data necessary to do the transformation is not yet loaded. Computes a rotation matrix to transform a point or vector from True Equator Mean Equinox (TEME) axes to the pseudo-fixed axes at a given time. This method treats the UT1 time standard as equivalent to UTC.

How do you describe a rotation about the origin followed by translation?

A rotation about the origin followed by a translation may be described by a single matrix where is the rotation matrix, is the translation, and is the vector of zeros. Since the last row of the rotation-translation matrix is always , they are sometimes shorthanded to a augmented matrix

How do you combine translation and rotation in robotics?

Combining translation and rotation Suppose a rotation by is performed, followed by a translation by . This can be used to place the robot in any desired position and orientation. Note that translations and rotations do not commute!

Least-Squares Rigid Motion Using SVD

Olga Sorkine-Hornung and Michael Rabinovich

Department of Computer Science, ETH Zurich

January 16, 2017Abstract

This note summarizes the steps to computing the best-tting rigid transformation that aligns two sets of corresponding points. Keywords:Shape matching, rigid alignment, rotation, SVD1 Problem statement LetP=fp1;p2;:::;pngandQ=fq1;q2;:::;qngbe two sets of corresponding points inRd. We wish to nd a rigid transformation that optimally aligns the two sets in the least squares sense, i.e., we seek a rotationRand a translation vectortsuch that (R;t) = argmin

R2SO(d);t2Rdn

X i=1w ik(Rpi+t)qik2;(1) wherewi>0 are weights for each point pair. In the following we detail the derivation ofRandt; readers that are interested in the nal recipe may skip the proofs and go directly Section 4.

2 Computing the translation

AssumeRis xed and denoteF(t) =Pn

i=1wik(Rpi+t)qik2. We can nd the optimal translation by taking the derivative ofFw.r.t.tand searching for its roots: 0 = @F@t=nX i=12wi(Rpi+tqi) = = 2t nX i=1w i! + 2R nX i=1w ipi! 2nX i=1w iqi:(2)

Denote

p=P n i=1wipiP n i=1wi;q=P n i=1wiqiP n i=1wi:(3) 1

By rearranging the terms of (2) we get

t=qRp:(4) In other words, the optimal translationtmaps the transformed weighted centroid ofPto the weighted centroid ofQ. Let us plug the optimaltinto our objective function: n X i=1w ik(Rpi+t)qik2=nX i=1w ikRpi+qRpqik2= (5) nX i=1w ikR(pip)(qiq)k2:(6) We can thus concentrate on computing the rotationRby restating the problem such that the translation would be zero: x i:=pip;yi:=qiq:(7)

So we look for the optimal rotationRsuch that

R= argmin

R2SO(d)n

X i=1w ikRxiyik2:(8)

3 Computing the rotation

Let us simplify the expression we are trying to minimize in (8): kRxiyik2= (Rxiyi)T(Rxiyi) = (xTiRTyTi)(Rxiyi) = =xTiRTRxiyTiRxixTiRTyi+yTiyi= =xTixiyTiRxixTiRTyi+yTiyi:(9) We got the last step by remembering that rotation matrices implyRTR=I(Iis the identity matrix). Note thatxTiRTyiis a scalar:xTihas dimension 1d,RTisddandyiisd1. For any scalar awe trivially havea=aT, therefore x

TiRTyi= (xTiRTyi)T=yTiRxi:(10)

Therefore we have

kRxiyik2=xTixi2yTiRxi+yTiyi:(11) Let us look at the minimization and substitute the above expression: argmin

R2SO(d)n

X i=1w ikRxiyik2= argmin

R2SO(d)n

X i=1w i(xTixi2yTiRxi+yTiyi) = = argmin

R2SO(d)

nX i=1w ixTixi2nX i=1w iyTiRxi+nX i=1w iyTiyi! = argmin

R2SO(d)

2nX i=1w iyTiRxi! :(12) 2 2 6 664w
1 w 2... w n3 7 7752
6

664|yT1|

|yT2| |yTn|3 7 7752
4 R3 52

4j j j

x

1x2:::xn

j j j3 5 2 6

664|w1yT1|

|w2yT2| |wnyTn|3 7 7752

4j j j

Rx1Rx2::: Rxn

j j j3 5 =2 6 664w

1yT1Rx1

w

2yT2Rx2...

wnyTnRxn3 7 775

Figure 1: Schematic explanation of

Pn i=1wiyTiRxi= tr(WYTRX).

The last step (removing

Pn i=1wixTixiandPn i=1wiyTiyi) holds because these expressions do not depend onRat all, so excluding them would not aect the minimizer. The same holds for multiplication of the minimization expression by a scalar, so we have argmin

R2SO(d)

2nX i=1w iyTiRxi! = argmax

R2SO(d)n

X i=1w iyTiRxi:(13)

We note that

nX i=1w iyTiRxi= tr WYTRX ;(14) whereW= diag(w1;:::;wn) is annndiagonal matrix with the weightwion diagonal entryi; Yis thednmatrix withyias its columns andXis thednmatrix withxias its columns. We remind the reader that the trace of a square matrix is the sum of the elements on the diagonal: tr(A) =Pn i=1aii. See Figure 1 for an illustration of the algebraic manipulation. Therefore we are looking for a rotationRthat maximizes trWYTRX. Matrix trace has the property tr(AB) = tr(BA) (15) for any matricesA;Bof compatible dimensions. Therefore tr WYTRX = tr (WYT)(RX) = tr RXWYT :(16) Let us denote thedd\covariance" matrixS=XWYT. Take SVD ofS:

S=UVT:(17)

Now substitute the decomposition into the trace we are trying to maximize: tr RXWYT = tr(RS) = tr RUVT = tr VTRU :(18) The last step was achieved using the property of trace (15). Note thatV,RandUare all orthogonal matrices, soM=VTRUis also an orthogonal matrix. This means that the columns ofMare orthonormal vectors, and in particular,mTjmj= 1 for eachM's columnmj. Therefore all entriesmijofMare1 in magnitude:

1 =mTjmj=dX

i=1m

2ij)m2ij1) jmijj 1:(19)

3 So what is the maximum possible value fortr(M)? Remember that is a diagonal matrix with non-negative values1;2;:::;d0 on the diagonal. Therefore: tr(M) =

12...d!

m11m12::: m1dm21m22::: m2d............md1md2::: mdd! =dX i=1 imiidX i=1 i:(20) Therefore the trace is maximized ifmii= 1. SinceMis an orthogonal matrix, this means that

Mwould have to be the identity matrix!

I=M=VTRU)V=RU)R=V UT:(21)

Orientation rectication.The process we just described nds the optimalorthogonalma- trix, which could potentially contain re ections in addition to rotations. Imagine that the point setPis a perfect re ection ofQ. We will then nd that re ection, which aligns the two point sets perfectly and yields zero energy in (8), the global minimum in this case. However, if we

restrict ourselves to rotations only, there might not be a rotation that perfectly aligns the points.

Checking whetherR=V UTis a rotation is simple: if det(V UT) =1 then it contains a re ection, otherwise det(V UT) = +1. Assume det(V UT) =1. RestrictingRto a rotation is equivalent to restrictingMto a re ection. We now want to nd a re ectionMthat maximizes: tr(M) =1m11+2m22+:::+dmdd=:f(m11;:::;mdd):(22) Note thatfonly depends on the diagonal ofM, not its other entries. We now consider themii's as variables (m11;:::;mdd). This is the set of all diagonals of re ection matrices of ordern. Surprisingly, it has a very simple structure. Indeed, a result by A. Horn [1] states that the set of all diagonals of rotation matrices of ordernis equal to the convex hull of the points (1;:::;1) with an even number of coordinates that are1. Since any re ection matrix can be constructed by inverting the sign of a row of a rotation matrix and vice versa, it follows that the set we are optimizing on is the convex hull of the points (1;:::;1) with anunevennumber of1's. Since our domain is a convex polyhedron, the linear functionfattains its extrema at its vertices. The diagonal (1;1;:::;1) is not in the domain since it has an even number of1's (namely, zero), and therefore the next best shot is (1;1;:::;1;1): tr(M) =1+2+:::+d1d:(23) This value is attained at a vertex of our domain, and is larger than any other combination of the form (1;:::;1) except (1;1;:::;1), becausedis the smallest singular value. To summarize, we arrive at the fact that if det(V UT) =1, we need

M=VTRU=0

@1

1...111

A )R=V0 @1

1...111

A

UT:(24)

We can write a general formula that encompasses both cases, det(V UT) = 1 and det(V UT) =1: R=V0 B @1 1...1 det(V UT)1 C

AUT:(25)

4

4 Rigid motion computation { summary

Let us summarize the steps to computing the optimal translationtand rotationRthat minimize n X i=1w ik(Rpi+t)qik2:

1. Compute the weighted centroids of both point sets:

p=P n i=1wipiP n i=1wi;q=P n i=1wiqiP n i=1wi:

2. Compute the centered vectors

x i:=pip;yi:=qiq; i= 1;2;:::;n:

3. Compute theddcovariance matrix

S=XWYT;

whereXandYare thednmatrices that havexiandyias their columns, respectively, andW= diag(w1;w2;:::;wn).

4. Compute the singular value decompositionS=UVT. The rotation we are looking for is

then R=V0 B @1 1...1 det(V UT)1 C AUT:

5. Compute the optimal translation as

t=qRp:

Acknowledgments

We are grateful to Julian Panetta, Zohar Levi and Mario Botsch for their help with improving this note.

References

[1] A. Horn,Doubly stochastic matrices and the diagonal of a rotation matrix. Amer. J. Math.

76:620{630 (1954).

5quotesdbs_dbs19.pdfusesText_25
[PDF] exercice pagination mémoire

[PDF] pagination mémoire virtuelle

[PDF] difference entre pagination et segmentation

[PDF] conversion adresse logique adresse physique

[PDF] pagination et segmentation pdf

[PDF] pagination systeme d'exploitation

[PDF] telecharger un livre de grammaire pdf

[PDF] larousse conjugaison pdf

[PDF] telecharger larousse difficultés grammaticales pdf

[PDF] larousse grammaire francais

[PDF] larousse orthographe pdf

[PDF] larousse livre de bord orthographe pdf

[PDF] introduction grammaire generative

[PDF] chomsky théorie

[PDF] chomsky linguistique pdf