[PDF] FONCTION EXPONENTIELLE 1) Relation fonctionnelle. Théorè





Previous PDF Next PDF



FONCTION EXPONENTIELLE

1) Relation fonctionnelle. Théorème : Pour tous réels x et y on a : Remarque : Cette formule permet de transformer une somme en produit et réciproquement.



Fonctions convexes telles que f(x+1)-f(x)=ln(x) et f(1)=0

Rappel. Soit f une application définie sur un intervalle ouvert I `a valeurs réelles. Si f est convexe



FONCTION DERIVÉE

Ainsi pour tout x de R {0}



Fonction f(x) = 1 x Ensemble de définition Parité Variations

1 x. Ensemble de définition. L'ensemble de définition de la fonction f est. Df = R {0} = R? =] ? ? 0[ ? ]0



Tableau des dérivées élémentaires et règles de dérivation

1 Dérivation des fonctions élémentaires. Fonction. Df. Dérivée. D f f(x) = k. R f (x) = 0. R f(x) = x. R f (x) = 1. R f(x) = xn n ? N?. R f (x) = nxn?1.



f (x)=a(x?x1 )(x?x2 Quels sont les 2 autres cas ?

On appelle racine d'une fonction f(x) trinôme du second degré tout «x0» tel que f(x0) = 0 f (x)=a(x?x1. )(x?x2. ) si la fonction a 2 racines .



FONCTIONS AFFINES (Partie 2)

1 donc C ? (d). Soit une fonction affine f : x ax + b représentée dans un repère par une droite d. Les coordonnées (x ; y) d'un point M appartenant à d 



Trinômes du second degré

On a alors la factorisation f (x) = a(x – x1)². ax² + bx + c est du signe de a. •. Si < 0 l'équation 



FONCTIONS COSINUS ET SINUS

Le sinus du nombre réel x est l'ordonnée de M et on note sin x. Propriétés : x. 0 ?. 6 ?. 4 ?. 3 ?. 2 ? cosx. 1. 3. 2. 2. 2. 1. 2. 0. -1 sinx. 0. 1.



Tableaux des dérivées Dérivées des fonctions usuelles Notes

Fonction f. Fonction dérivée f '. Intervalles de dérivabilité. P f (x) = k (constante réelle) f ' (x) = 0. ?. 1. U f (x) = x f ' (x) = 1.



Solutions to HW5 Problem 31 - IUPUI

Find the PDFfX(x) of X Problem 3 2 2 Solution From the CDF we can ?nd the PDF by direct di?erentiation TheCDF and correpondingPDF are 0 x < ?1 FX(x) = (x+ 1)/2 x

What is a transformation of f(x) = 1 x?

A transformation of f(x) = 1 x f ( x) = 1 x is a function g (x) that can be simplified to the form g(x) = a x?h +k g ( x) = a x ? h + k where a controls vertical stretching, shrinking, and flipping, h is a horizontal translation, and k is a vertical translation. Let's look through the effects each type of transformation has.

Is f(x) = 1/x a simple function?

f ( x) = 1/ x looks like it ought to be a simple function, but its graph is a little bit complicated. It's really not as bad as it looks, though! Let's examine it more closely. If you follow the function's behavior from left to right, you can see that it's a decreasing function, a function where f ( x) decreases as x increases.

What is the graph of f(x) = |x|?

The graph of f (x) = |x| is vertically stretched by a factor of 3, shifted left 2 units, shifted down 4 units and reflected over the x-axis. What is the function equation of the resulting graph? The first transformation (vertically stretched by a factor of 3) means we multiply by 3 the original function:

What is the notation f(x)=[x]?

The notation f (x)= [x] represents the greatest integer function, with the integer being less than or equal to x. Since we have to find the nearest integer smaller than the given number, we can say that greatest integer function always rounds down its input to the nearest integer. We have to find the value of [3.6].

1

FONCTION EXPONENTIELLE

I. Définition

Théorème : Il existe une unique fonction f dérivable sur ℝ telle que et

Démonstration de l'unicité (exigible BAC) :

L'existence est admise

- Démontrons que f ne s'annule pas sur ℝ.

Soit la fonction h définie sur ℝ par .

Pour tout réel x, on a :

La fonction h est donc constante.

Comme , on a pour tout réel x :.

La fonction f ne peut donc pas s'annuler.

- Supposons qu'il existe une fonction g telle que et .

Comme f ne s'annule pas, on pose .

k est donc une fonction constante.

Or donc pour tout x : .

Et donc . L'unicité de f est donc vérifiée. Définition : On appelle fonction exponentielle l'unique fonction dérivable sur ℝ telle que et .

On note cette fonction exp.

Conséquence :

Avec la calculatrice, il est possible d'observer l'allure de la courbe représentative de la fonction exponentielle : f'=f f(0)=1 h(x)=f(x)f(-x) h'(x)=f'(x)f(-x)+f(x)-f'(-x) =f'(x)f(-x)-f(x)f'(-x) =f(x)f(-x)-f(x)f(-x) =0 h(0)=f(0)f(0)=1 f(x)f(-x)=1 g'=g g(0)=1 k(x)= g(x) f(x) k'(x)= g'(x)f(x)-g(x)f'(x) f(x) 2 g(x)f(x)-g(x)f(x) f(x) 2 =0 k(0)= g(0) f(0) 1 1 =1 k(x)=1 f(x)=g(x) f'=f f(0)=1 exp(0)=1 2 Remarque : On prouvera dans le paragraphe II. que la fonction exponentielle est croissante. Mais sa croissance est très rapide, ainsi exp(21) dépasse le milliard.

II. Etude de la fonction exponentielle

1) Dérivabilité

Propriété : La fonction exponentielle est continue et dérivable sur ℝ et Démonstration : Conséquence immédiate de sa définition

2) Variations

Propriété : La fonction exponentielle est strictement croissante sur ℝ. Démonstration : On a démontré dans le paragraphe I. que la fonction exponentielle ne s'annule jamais.

Or, par définition, donc pour tout x, .

Comme , la fonction exponentielle est strictement croissante.

3) Limites en l'infini

Propriété : et

- Propriété démontrée au paragraphe III. -

4) Courbe représentative

On dresse le tableau de variations de la fonction exponentielle : x 0 expx '=expx exp(0)=1 expx>0 expx '=expx>0 lim x→-∞ expx=0 lim x→+∞ expx=+∞ expx expx 3

III. Propriété de la fonction exponentielle

1) Relation fonctionnelle

Théorème : Pour tous réels x et y, on a : Remarque : Cette formule permet de transformer une somme en produit et réciproquement.

Démonstration :

Comme , on pose avec y un nombre réel.

Pour tout x, on a .

Donc la fonction f est constante.

Comme , on en déduit que .

Corollaires : Pour tous réels x et y, on a :

a) b) c) avec expx+y =expxexpy expx≠0 f(x)= exp(x+y) expx f'(x)= exp(x+y)expx-exp(x+y)expx expx 2 =0 f(0)= exp(y) exp(0) =expy exp(x+y) expx =expy exp-x 1 expx expx-y expx expy expnx =expx n n∈! 4

Démonstration :

a) b) c) La démonstration s'effectue par récurrence.

L'initialisation est triviale.

La démonstration de l'hérédité passe par la décomposition :

2) Le nombre e

Définition : L'image de 1 par la fonction exponentielle est notée e.

On a ainsi

Remarque : Avec la calculatrice, on peut obtenir une valeur approchée de e.

Notation nouvelle :

On note pour tout x réel,

Comme , le nombre e est un nombre irrationnel, c'est à dire qu'il s'écrit avec un nombre infini de décimales sans suite logique .

Ses premières décimales sont :

e 2,7182818284 5904523536 0287471352 6624977572 4709369995

9574966967 6277240766 3035354759 4571382178 5251664274...

Le nombre e est également un nombre transcendant. On dit qu'un nombre est t ranscendant s'il n'e st solution d'aucune équation à coefficients entiers. Le nombre par exempl e, est irrationnel mais n'est pas transcendant puisqu'il est solution de l'équation . Un tel nombre est dit "algébrique».

Le premier à s'intéresser de façon sérieuse au nombre e est le mathématicien suisse Leonhard

Euler (1707 ; 1783), ci-dessus. C'est à lui que nous devons le nom de ce nombre. Non pas qu'il s'agisse de l'initiale de son nom ma is peut être car e est la première lettre du mot exponentiel. expxexp-x =expx-x =exp(0)=1 expx-y =expx+(-y) =expxexp-y =expx 1 expy expx expy expn+1 x =expnx+x =expnx expx=expx n expx=expx n+1 exp1=e expx=exp(x×1)=exp(1) x =e x expx=e x 2 x 2 =2 5 Dans " Introductio in Analysin infinitorum » publié en 1748, Euler explique que : Rappelons que par exemple 5! se l it "factorielle 5" et e st égal à 1 x 2 x 3 x 4 x 5. Par cette formule, il obtient une estimation de e avec 18 décimales exactes. Nous devons aussi à Euler la démonstration de l'irrationalité de e. Avec cette nouvelle notation, on peut ainsi résumer l'ensemble des propriétés de la fonction exponentielle : Propriétés : Pour tous réels x et y, on a : a) et b) et c) , , , , avec . d) et Remarque : On retrouve les propriétés des puissances.

Démonstration de d) (exigible BAC) :

- Soit la fonction g définie par . Pour x positif, car la fonction exponentielle est croissante.

Donc la fonction g est croissante sur .

On dresse ainsi le tableau de variations :

x 0

0 +

1

Comme , on a pour tout x, .

Et donc , soit .

D'après le théorème de comparaison des limites, on en déduit que car

Dériver une fonction exponentielle :

Vidéo https://youtu.be/XcMePHk6Ilk

e=1+ 1 1! 1 2! 1 3! e 0 =1 e 1 =e e x >0 (e x )'=e x e x+y =e x e y e x-y e x e y e -x 1quotesdbs_dbs26.pdfusesText_32
[PDF] f'(x) dérivé

[PDF] f(x)=x^4

[PDF] f(x)=3

[PDF] livre mécanique appliquée pdf

[PDF] mécanique appliquée définition

[PDF] mécanique appliquée cours et exercices corrigés pdf

[PDF] mecanique appliquée bac pro

[PDF] pdf mecanique general

[PDF] mécanique appliquée et construction

[PDF] z+1/z-1 imaginaire pur

[PDF] z+1/z-1=2i

[PDF] questions ? poser lors dun audit interne

[PDF] questions posées lors dun audit

[PDF] questionnaire audit interne pdf

[PDF] questionnaire d'audit interne gratuit