[PDF] 5. Dérivées de fonctions de plusieurs variables





Previous PDF Next PDF



Dérivées et différentielles des fonctions de plusieurs variables

La différentielle logarithmique df/f d'une fonction de plusieurs variables réalise une approximation de la variation relative : Exemple : Page 29. IV.



Dérivées et différentielles des fonctions de plusieurs variables

La différentielle logarithmique df/f d'une fonction de plusieurs variables réalise une approximation de la variation relative : Exemple : Page 23. IV.



´Eléments de calculs pour létude des fonctions de plusieurs

Dans ce module il est question de fonctions de plusieurs variables et d'équations différentielles. 2 Dérivées partielles Différentielles.



5. Dérivées de fonctions de plusieurs variables

Dérivées de fonctions de plusieurs variables Fonction de deux variables : Dérivées secondes ... Différentielles de x et y : dx et dy (indépendantes).



Dérivées des fonctions de plusieurs variables (suite) 1 La

Dérivées des fonctions de plusieurs variables (suite). 1 La différentielle d'une fonction à valeurs réelles. Cas des fonctions d'une variable.



FONCTIONS DE n VARIABLES RÉELLES : DÉFINITION LIMITE

fonction puis comment il est possible d'exprimer la différentielle d'une variable dérivée partielle d'ordre (p+q) d'une fonction de deux variables ...



Fascicule dexercices

Dérivées et différentielles - Fonction d'une variable. 3. Etude de fonctions. 4. Dérivées et différentielles - Fonction de plusieurs variables.



1 Dérivées partielles et différentielles

Jan 9 2012 Rappel de cours et relations entre les dérivées partielles utiles en thermodynamique du ... Soit f une fonction à plusieurs variables.



-8.5cm Maths et stats en Gestion .5cm Chapitre IV Mesure de l

4a) Dérivées d'une fonction de 1 variable. 4b) Variations et Approximations d'une fonction de 1 variable. 5) [ouverture] Différentielle des fonctions de 2 



Cours dAnalyse 3 Fonctions de plusieurs variables

Proposition 3.11 (DERIVEES PARTIELLES ET DIFFERENTIABILITE). 49. Page 50. 3.5 Opérations sur les fonctions différentiables. Calcul différentiel. Preuve : Pas 

1/72/73/74/75/76/77/7

5. D´eriv´ees de fonctions de plusieurs

variables

MTH1101

C. Audet, G. Jomphe, S. Le Digabel

Polytechnique Montr´eal

A2022 v7

MTH1101: Calcul I1/49

1/72/73/74/75/76/77/7

Plan

1. D´eriv´ees partielles

2. Approximations lin´eaires

3. Difff´erentielle

4. Difff´erentiabilit´e

5. D´erivation en chaˆıne

6. D´eriv´ee directionnelle

7. D´eveloppement de Taylor pour les fonctions de plusieurs

variables

MTH1101: Calcul I2/49

1/72/73/74/75/76/77/7

1. D´eriv´ees partielles

2. Approximations lin´eaires

3. Difff´erentielle

4. Difff´erentiabilit´e

5. D´erivation en chaˆıne

6. D´eriv´ee directionnelle

7. D´eveloppement de Taylor pour les fonctions de plusieurs

variables

MTH1101: Calcul I3/49

1/72/73/74/75/76/77/7

Fonction de une variable

Soitfune fonction de une variable d´eifinie deRdansR La d ´eriv´eede fau pointx∈Rest f ′(x) =dfdx (x) = limh→0f(x+h)-f(x)h (si cette limite existe) f′(x)est aussi appel´e letaux de va riation(instantann ´e)ou la pente de la tangente au graphe en x On peut approcherf′(x)par l'expression suivante o`uhest petit (d´eriv´ee amont) : f ′(x)≃f(x+h)-f(x)h

MTH1101: Calcul I4/49

1/72/73/74/75/76/77/7

Fonction de deux variables

Soitfune fonction de deux variables d´eifinie deR2dansR Les d ´eriv´eepa rtiellesde fau point(x,y) =x∈R2sont ∂f∂x (x) =∂∂x f(x) =fx(x) = limh→0f(x+h,y)-f(x)h ∂f∂y (x) =∂∂y f(x) =fy(x) = limh→0f(x,y+h)-f(x)h

MTH1101: Calcul I5/49

1/72/73/74/75/76/77/7

Fonction de deux variables : D´eriv´ees secondes D´eriv´ees secondes :

2f∂x

2(x) =∂∂x

∂f∂x (x) =∂∂x (fx(x)) =fxx(x)

2f∂x∂y

(x) =∂∂x ∂f∂y (x) =∂∂x (fy(x)) =fyx(x)

Mˆeme logique pourfyyetfxy

Si lesd´eriv´ees mixtesfxyetfyxexistent et sont continues, alors elles sont ´egales :fxy(x) =fyx(x)

Matrice hessienne

de fen(x):

H(x) =∇2f(x) =fxx(x)fyx(x)

f xy(x)fyy(x) ∈R2×2 (sym´etrique quandfxy(x) =fyx(x))MTH1101: Calcul I6/49

1/72/73/74/75/76/77/7

Fonction denvariables

Soitfune fonction denvariables d´eifinie deRndansR

Soitx= (x1,x2,...,xn)

Lesnd´eriv´ees partielles defenxsont, pouri= 1,2,...,n: ∂f∂x i(x) = limh→0f(x1,x2,...,xi-1,xi+h,xi+1,...,xn)-f(x)h Le gradient est le vecteur des d ´eriv´eespa rtielles: ∇f(x) =∂f∂x

1(x),∂f∂x

2(x),...,∂f∂x

n(x)

MTH1101: Calcul I7/49

1/72/73/74/75/76/77/7

Exemples 1 et 2

1.Donner le gradient def(x,y) = cos5x3y2-xy3, puis

∇f(1,0)

2.Donner le gradient et la matrice hessienne de

f(x,y) =x2-y2, puis exprimer-les en0MTH1101: Calcul I8/49

1/72/73/74/75/76/77/7

Approximation des d´eriv´ees partielles

M´ethode des difff´erences ifinies illustr´ee sur une fonction de deux variables, selon unpetitd´eplacement enxnot´e∆x:

D´eriv´ee amont :

f x(x)≃f(x+ ∆x,y)-f(x)∆x

D´eriv´ee aval :

f x(x)≃f(x)-f(x-∆x,y)∆x

D´eriv´ee centr´ee :

f x(x)≃f(x+ ∆x,y)-f(x-∆x,y)2∆xMTH1101: Calcul I9/49

1/72/73/74/75/76/77/7

Approximation des d´eriv´ees : Avec une table

On dispose des 4 valeurs suivante def(x,y):x

1x2y 1v 1v2 y 2v 3v4

Les d´eriv´ees amont donnent :

∂f∂x

2-x1=v2-v1x

2-x1 ∂2f∂y∂x (x1,y1) =∂fx∂y f x(x1,y2)-hv2-v1x

2-x1iy

2-y1≃h

v4-v3x 2-x1i -hv2-v1x

2-x1iy

2-y1

De mˆeme :∂2f∂x∂y

(x1,y1)≃h v4-v2y 2-y1i -hv3-v1y

2-y1ix

2-x1 Ces approximations ne respectent pas forc´ement f xy(x) =fyx(x)MTH1101: Calcul I10/49

1/72/73/74/75/76/77/7

Approximation des d´eriv´ees : Avec des courbes de niveau Exemple 3 :Exercice 4.1.10 page 157MTH1101: Calcul I11/49

1/72/73/74/75/76/77/7

1. D´eriv´ees partielles

2. Approximations lin´eaires

3. Difff´erentielle

4. Difff´erentiabilit´e

5. D´erivation en chaˆıne

6. D´eriv´ee directionnelle

7. D´eveloppement de Taylor pour les fonctions de plusieurs

variables

MTH1101: Calcul I12/49

1/72/73/74/75/76/77/7

Approximation lin´eaire

Motivation :Approximer, en un point, une fonction quelconque par une autre plus simple telle une droite ou un plan (la possibilit´e de faire ceci sera discut´ee lors de la d´eifinition de la difff ´erentiabilit´e Une approximation lin´eaire (aiÌifiÌine) est une fonction de la forme

L(x,y) =ax+by+c

G´eom´etriquement cela signiifie que :

f(x)sera approxim´ee par une droite :f(x)≃ax+b Pour trouver cette approximation, il est n´ecessaire de faire appel augradientMTH1101: Calcul I13/49

1/72/73/74/75/76/77/7

Gradient

Legradientest le vecteur des d´eriv´ees partielles : ∇f(x) =∂f∂x

1(x),∂f∂x

2(x),...,∂f∂x

n(x) Pour une fonctionf(x,y,z), en un pointx0= (x0,y0,z0), on note ∇f(x0) =∂f∂x (x0)⃗i+∂f∂y (x0)⃗j+∂f∂z (x0)⃗k Le gradient est un vecteur qui est perpendiculaire `a une courbe de niveauf(x,y) =cou `a une surface de niveau f(x,y,z) =cMTH1101: Calcul I14/49

1/72/73/74/75/76/77/7

Vecteur normal `a une surface

Pour obtenir un vecteur normal-→N`a une courbe ou une surface de niveau, en un pointx0, il suiÌifiÌit de prendre -→N(x0) =±∇f(x0)

Exemple 4 :Donner un vecteur normal `a la surface

z=g(x,y) =x2+y2(cˆone parabolique) au pointx0= (0,0,0)MTH1101: Calcul I15/49

1/72/73/74/75/76/77/7

Plan tangent `a une surface (1/3)

On cherche l'´equation du plan tangent `a une surfacez=f(x,y) au point de contactp0= (x0,y0,z0) = (x0,z0)∈R3entre le plan et la surface. Soitp= (x,y,z)∈R3un point appartenant au plan tangent

PosonsF(x,y,z) =z-f(x,y). La surface de niveau

F(x,y,z) = 0correspond `a la surfacez=f(x,y)

Comme∇F(x0,z0)est orthogonal au vecteur--→p0p, alors le produit scalaire entre ces vecteurs est nul :

1/72/73/74/75/76/77/7

Plan tangent `a une surface (2/3)

Le produit scalaire

devient ∂F(x0,z0)∂x ∂F(x0,z0)∂y ∂F(x0,z0)∂z x-x0 y-y0 z-z0 = 0 qui donne l'´equation du plan tangent `a la surface : ∂F(x0,z0)∂x (x-x0)+∂F(x0,z0)∂y (y-y0)+∂F(x0,z0)∂z (z-z0) = 0MTH1101: Calcul I17/49

1/72/73/74/75/76/77/7

Plan tangent `a une surface (3/3)

∂F(x0,z0)∂x (x-x0) +∂F(x0,z0)∂y (y-y0) +∂F(x0,z0)∂z (z-z0) = 0

CommeF(x,y,z) =z-f(x,y), on a :

∂F(x0,z0)∂x =-∂f(x0)∂x ,∂F(x0,z0)∂y =-∂f(x0)∂y , et∂F(x0,z0)∂z = 1 z0=f(x0)compl`ete l'´equation du plan tangent : z=f(x0) +∂f(x0)∂x (x-x0) +∂f(x0)∂y (y-y0) |{z}

L(x,y)=ax+by+c

L'approximation estf(x,y)≃L(x,y)(fonction lin´eaire (aiÌifiÌine) enxety)MTH1101: Calcul I18/49

1/72/73/74/75/76/77/7

1. D´eriv´ees partielles

2. Approximations lin´eaires

3. Difff´erentielle

4. Difff´erentiabilit´e

5. D´erivation en chaˆıne

6. D´eriv´ee directionnelle

7. D´eveloppement de Taylor pour les fonctions de plusieurs

variables

MTH1101: Calcul I19/49

1/72/73/74/75/76/77/7

Difff´erentielle pour une fonction `a une variable Soity=f(x). On cherche `a approximer un accroissement∆ydey lorsquexsubit un accroissement de∆xDifff´erentielle dex:dxpeut prendre n'importe quelle valeur, dont∆x

Difff´erentielle dey: Variation de

l'ordonn´ee de la tangente : dy(x) =df(x) =f′(x)dx (avecx=asur la ifigure)

On af′(x) =dydx

(x) =dfdx (x)et la variation de la fonction est : ∆f(x) = ∆y(x)≃dy(x) =f′(x)dxMTH1101: Calcul I20/49

1/72/73/74/75/76/77/7

Difff´erentielle pour une fonction `a deux variables z=f(x,y) Difff´erentielles dexety:dxetdy(ind´ependantes)

On peut poserdx= ∆xetdy= ∆y

Difff´erentielle totale :

df(x,y) =dz(x,y) = f x(x,y)dx+fy(x,y)dy=∂f(x,y)∂x dx+∂f(x,y)∂y dy (not´e aussidf=dz=∂f∂x dx+∂f∂y dy) Approximation num´erique de la variation defen(x,y): ∆f(x,y) = ∆z(x,y)≃dz(x,y)MTH1101: Calcul I21/49

1/72/73/74/75/76/77/7

Propri´et´es

Sifest constante, alorsdf= 0

Sif=f1+f2, alorsdf=df1+df2

Sif=f1f2, alorsdf=df1f2+f1df2

Sif=1f

2, alorsdf=-df2/f22

Sif=f1f

2, alorsdf=df1f2-f1df2f

22MTH1101: Calcul I22/49

1/72/73/74/75/76/77/7

Exemples

Exemple 5 :

Calculerdzpourf(x,y) =z=x2+ 3xy-y2

Sixvarie de 2 `a 2.05, etyde 3 `a 2.96, comparer∆zetdz Exemple 6 :Trouver la difff´erentielle deR, la r´esistance ´equivalente de deux r´esistances connect´ees en parall`eles : 1R =1R 1+1R 2 Exemple 7 :On mesure le rayonr0d'un ballon et on constate qu'il est de 30cm avec une erreur de mesure de±1cm. Quelle est l'erreur maximale associ´ee au volume du ballon?

MTH1101: Calcul I23/49

1/72/73/74/75/76/77/7

1. D´eriv´ees partielles

2. Approximations lin´eaires

3. Difff´erentielle

4. Difff´erentiabilit´e

5. D´erivation en chaˆıne

6. D´eriv´ee directionnelle

7. D´eveloppement de Taylor pour les fonctions de plusieurs

variables

MTH1101: Calcul I24/49

1/72/73/74/75/76/77/7

Introduction

La notion de difff´erentiabilit´e permettra de r´epondre `a la question : Est-il possible d'approximer localement au point x

0= (x0,y0), une fonctionfpar une fonction lin´eaireL?

G´eom´etriquement, puisqu'en g´en´eralz=f(x,y)repr´esente une surface dans l'espace, la question est de savoir s'il existe un plan tangent ` acette sur faceau p ointde c ontact p

0= (x0,y0,f(x0,y0)) = (x0,z0). Si oui, la fonction sera dite

difff´erentiable enp0. Sinon elle seranon difff´erentiable enp0 Une fonction difff´erentiable en tout point de son domaine est dite difff´erentiable

MTH1101: Calcul I25/49

1/72/73/74/75/76/77/7

Difff´erentiabilit´e : D´eifinition

Soit la fonctionz=f(x,y)deDf⊆R2dansR

Soientx0= (x0,y0)etx0+ ∆x= (x0+ ∆x,y0+ ∆y)deux points deDf festdifff ´erentiablesi la va riationde la fonction p eutse d´ecomposer sous la forme ∆z=f(x0+∆x)-f(x0) =fx(x0)∆x+fy(x0)∆y+ε1∆x+ε2∆y (ε1etε2sont des fonctions de∆xet∆y)MTH1101: Calcul I26/49

1/72/73/74/75/76/77/7

Difff´erentiabilit´e : Th´eor`emes

Sifxetfyexistent et sont continues au pointx, alorsfest difff´erentiable enx Si une fonctionfest difff´erentiable en un point, alors elle est continue en ce point (r´eciproque fausse, voirexemple 8)MTH1101: Calcul I27/49

1/72/73/74/75/76/77/7

Difff´erentiabilit´e : Exemples

Exemple 8 :Montrer quef(x,y) =px

2+y2n'est pas

difff´erentiable en(0,0)

Exemple 9 :Montrer que la fonction suivante est

difff´erentiable en(0,0): f(x,y) =( x4x

2+y2+ysi(x,y)̸= (0,0)

0sinonMTH1101: Calcul I28/49

1/72/73/74/75/76/77/7

1. D´eriv´ees partielles

2. Approximations lin´eaires

3. Difff´erentielle

4. Difff´erentiabilit´e

5. D´erivation en chaˆıne

6. D´eriv´ee directionnelle

7. D´eveloppement de Taylor pour les fonctions de plusieurs

variables

MTH1101: Calcul I29/49

1/72/73/74/75/76/77/7

Fonctions de une variable

R`egle de

d ´erivationen cha ˆıne p ourune comp ositionde fon ctions d'une seule variable : Siy=f(x)etx=g(t)avecfetg difff´erentiables, alorsyest une fonction difff´erentiable detet dydt =dydx dxdt

MTH1101: Calcul I30/49

1/72/73/74/75/76/77/7

Fonctions de deux variables : Cas 1

Sif(x,y)est difff´erentiable, et quex=g(t)ety=h(t)sont deux fonctions difff´erentiables det, alorsfest une fonction difff´erentiable detet dfdt =∂f∂x dxdt +∂f∂y dydt

MTH1101: Calcul I31/49

1/72/73/74/75/76/77/7

D´erivation en chaˆıne : Exemples

Exemple 10 :

Trouver

dzdt ent= 0 avec z=x2y+ 3xy4 x= sin2t Exemple 11 :SoitPV= 8.31T. Calculer le taux de variation dePlorsqueTvaut300et croˆıt de0.1par seconde, et que V= 100et croˆıt de0.2par secondeMTH1101: Calcul I32/49

1/72/73/74/75/76/77/7

Fonctions de deux variables : Cas 2

Sif(x,y)est difff´erentiable, et quex=g(s,t)ety=h(s,t)sont deux fonctions difff´erentiables desett, alorsfest une fonction difff´erentiable desettet ∂f∂s =∂f∂x ∂x∂s +∂f∂y ∂y∂s ∂f∂t =∂f∂x ∂x∂t +∂f∂y ∂y∂t

MTH1101: Calcul I33/49

1/72/73/74/75/76/77/7

D´eriv´ees secondes : Exemple 12

Soit la fonction continue et difff´erentiablef(x,y) avecx=s+tety=s-t

Calculer

∂f∂s ,∂f∂t ,∂2f∂s

2, et∂2f∂s∂t

MTH1101: Calcul I34/49

1/72/73/74/75/76/77/7

1. D´eriv´ees partielles

2. Approximations lin´eaires

3. Difff´erentielle

4. Difff´erentiabilit´e

5. D´erivation en chaˆıne

6. D´eriv´ee directionnelle

7. D´eveloppement de Taylor pour les fonctions de plusieurs

quotesdbs_dbs14.pdfusesText_20
[PDF] Chapitre deux : Calcul de variation, calcul d 'incertitude 21

[PDF] Évaluation Différents mais égaux, égalité de droits et discrimination

[PDF] Les Régimes Douaniers - ABSM BURKINA

[PDF] les styles de leadership - Optimist Leaders Online

[PDF] Les 6 différents styles d évangélisation - Archdiocese of Saint Boniface

[PDF] 1 Sentiment riche et complexe - Psychaanalyse

[PDF] Lecture cycle 3 - Fiche 49 la lettre site - Professeur Phifix

[PDF] Stéréotypes et préjugés dans le monde du travail, mythe ou réalité ?

[PDF] Les prélèvement en bactériologie - Edimark

[PDF] Les différents types de projets - Francas LR

[PDF] LES PROTOZOAIRES

[PDF] LES EAUX USÉES

[PDF] Les types de textes

[PDF] Tissus conjonctifs - Remedeorg

[PDF] LES DIFFERENTES FORMES JURIDIQUES D 'UNE ENTREPRISE