[PDF] Dérivées des fonctions de plusieurs variables (suite) 1 La





Previous PDF Next PDF



Dérivées et différentielles des fonctions de plusieurs variables

La différentielle logarithmique df/f d'une fonction de plusieurs variables réalise une approximation de la variation relative : Exemple : Page 29. IV.



Dérivées et différentielles des fonctions de plusieurs variables

La différentielle logarithmique df/f d'une fonction de plusieurs variables réalise une approximation de la variation relative : Exemple : Page 23. IV.



´Eléments de calculs pour létude des fonctions de plusieurs

Dans ce module il est question de fonctions de plusieurs variables et d'équations différentielles. 2 Dérivées partielles Différentielles.



5. Dérivées de fonctions de plusieurs variables

Dérivées de fonctions de plusieurs variables Fonction de deux variables : Dérivées secondes ... Différentielles de x et y : dx et dy (indépendantes).



Dérivées des fonctions de plusieurs variables (suite) 1 La

Dérivées des fonctions de plusieurs variables (suite). 1 La différentielle d'une fonction à valeurs réelles. Cas des fonctions d'une variable.



FONCTIONS DE n VARIABLES RÉELLES : DÉFINITION LIMITE

fonction puis comment il est possible d'exprimer la différentielle d'une variable dérivée partielle d'ordre (p+q) d'une fonction de deux variables ...



Fascicule dexercices

Dérivées et différentielles - Fonction d'une variable. 3. Etude de fonctions. 4. Dérivées et différentielles - Fonction de plusieurs variables.



1 Dérivées partielles et différentielles

Jan 9 2012 Rappel de cours et relations entre les dérivées partielles utiles en thermodynamique du ... Soit f une fonction à plusieurs variables.



-8.5cm Maths et stats en Gestion .5cm Chapitre IV Mesure de l

4a) Dérivées d'une fonction de 1 variable. 4b) Variations et Approximations d'une fonction de 1 variable. 5) [ouverture] Différentielle des fonctions de 2 



Cours dAnalyse 3 Fonctions de plusieurs variables

Proposition 3.11 (DERIVEES PARTIELLES ET DIFFERENTIABILITE). 49. Page 50. 3.5 Opérations sur les fonctions différentiables. Calcul différentiel. Preuve : Pas 

Dérivées des fonctions de plusieurs variables (suite) 1 La

L2 MIEE 2012-2013V ARUniv ersitéde Rennes 1

Dérivées des fonctions de plusieurs variables (suite)

1 La différentielle d"une fonction à valeurs réelles

Cas des fonctions d"une variable

(i)fest dérivable enX0silimh!0f(X0+h)f(X0)h existe.

Sa valeur`est notéef0(X0).

(ii) On p eut,de manière équiv alente,écrire limh!0f(X0+h)f(X0)`hh = 0. On remarque queh!L(h) =`hest une application linéaire deRdansR, que l"on appelledifférentielledefenX0et que l"on notedf(X0). (iii) Si fest dérivable enX0, alors pourhpetit :f(X0+h)est "voisin" def(X0)+f0(X0)h. Donch!f(X0) +f0(X0)hest une application affine qui "approche très bien " f(X0+h).

Définition

1.1. fest différentiable enxs"il existe une application linéaireL:Rn!R

telle que : f(x+h) =f(x) +L(h) +khk(h); aveclimh!0(h) = 0. L"applicationLestla différentielle defenxet se notedf(x) ouf0(x).

Remarque

Cette définition signifie que l"application affinef(x)+df(x)hest tangente à l"application h7!f(x+h)en 0. Lorsque qu"on remplacef(x+h)parf(x) +df(x)het quehest petit, alors on fait une erreur négligeable par rapport àh.

Cela revient à dire

lim khk!0f(x+h)f(x)L(h)khk= 0 La différentielle, lorsqu"elle existe, est unique.

Proposition

1.2. Sifest différentiable enx, alors ses dérivées partielles existent et on

a : df(x)h=@ f@ x

1(x)h1+:::+@ f@ x

n(x)hn =rfh

Remarque

La matrice de l"application linéairedf(x)dans la base canonique est le gradientrf(x). 1

L2 MIEE 2012-2013V ARUniv ersitéde Rennes 1

Proposition

1.3. Sifest différentiable enxalorsfest continue enx.

Remarque

L"existence des dérivées partielles defn"implique pas la différentiabilité.

Mais :

Théorème

1.4. Sifadmet des dérivées partielles et si elles sont continues alorsfest

différentiable.

On dit quefest de classeC1.

1.1 Règle de différentiation

Proposition

1.5. Sifetgsont différentiables on a :

(i)d(f+g)(x) =df(x) +dg(x) (ii)d(f)(x) =df(x) (iii)d(fg)(x) =f(x)dg(x) +g(x)df(x) (iv)dfg (x) =g(x)df(x)f(x)dg(x)g

2(x)(à condition queg(x)6= 0)

1.2 Remarques

Sif:U!RoùUest un ouvert deRn, alors :

(i) Si festC1surUalorsfest différentiable surUet les dérivées@ f@ x iexistent surU.

Les réciproques ne sont pas vraies!!

(ii) Si fest différentiable enx02Ualors l"application affineA(h) =f(x0) +df(x0)h a pour graphe l"espace tangent au graphe defenx0.

1.3 Dérivées partielles successives

Les dérivées partielles

@f@x i(x1;:::;xn)sont des fonctions dex1;:::;xn, et il arrive souvent qu"elles sont eux-même dérivables.

Définition

1.6. On écrit, lorsqu"elle existe,@2f@x

i@xj=@@x i @f@x j et on dit qu"il s"agit d"unedérivée partielle secondedef.

Exemple

f:R2!R;(x;y)7!x3y4. Alors@2f@x@y (x;y) = 12x2y3=@2f@y@x (x;y). 2

L2 MIEE 2012-2013V ARUniv ersitéde Rennes 1

Théorème

1.7. (Schwarz)

Si les déirvées partielles

@f@x i;@2f@x i@xjexistent et sont continues dans une boule autour de(a1:::an)alors : 2f@x i@xj(a) =@2f@x j@xi(a)

2 La différentielle d"une fonction à valeurs vectorielles

Définition

2.1. FdeRndansRmestdifférentiableenx2Rns"il existe uneappli-

cation linéaireLdeRndansRmtelle que : lim khk!0F(x+h)F(x)Lhkhk= 0:

Lest ladifférentielledeFenxet se note :dF(x).

Théorème

2.2. Fest différentiable enxsi et seulement si ses composants sont différen-

tiables et on a : dF(x)h= (rf1(x)h; ::: ;rfm(x)h):

Définition

2.3. La matrice

2 6 4@f 1@x

1(x)@f1@x

n(x) @f m@x

1(x)@fm@x

n(x)3 7 5 est la matrice dedF(x)et est appeléematrice jacobiennedeFenxet se note :J(F)(x).

Théorème

2.4. SiFa des composantes de classeC1alors elles sont différentiables etF

est également différentiable.

Exercice

(i) T rouverla matrice jaco biennede Fen(1;1)de :F(x; y) = (x2+y2; exy). (ii) T rouverla différen tiellede F(x; y ; z) = (x; y ; z). (iii) T rouverla diff érentiellede F(r; ) = (rcos; rsin).

2.1 Propriétés de la différentielle

Proposition

2.5. SiFdeRndansRmest linéaire, alorsdF(x) =F.

Proposition

2.6. SiFest différentiable enxalorsFest continue enx.

3

L2 MIEE 2012-2013V ARUniv ersitéde Rennes 1

2.2 Différentielles des fonctions composées

SiFest une fonction deRndansRm, siGest une fonction deRmdansRq, alorsGF est une fonction deRndansRq.

Théorème

2.7. SiFest différentiable enx, et siGest différentiable enF(x), alors

GFest différentiable enxet on a :

d(GF)(x) =dG(F(x))dF(x):

Exercice

DériverGFlorsque

F(x; y) = (x2+y2; exy)

G(u; v) = (xy ;sinx; x2y)

2.3 Sur la règle de dérivation en chaîne

Le résultat théorique

Soientf:Rn!Retg:Rp!Rndeux fonctions différentiables. Écrivonsh=f g:D"après la règle de dérivation des fonctions composées nous avons (comme pour les fonctions deRdansR) : h

0(x) = (fg)0(x) =f0(g(x)):g0(x):

La fonctionfgest une fonction deRpdansR. Sa dérivée est donc un vecteur ligne àp colonnes, la transposée de son gradient : h

0(x) =

@h@x 1@h@x

2:::@h@x

p La fonctiongest une fonction deRpdansRn. Sa dérivée est la matricenpcomposée des vecteurs transposés des gradients des coordonnées deg. Sig(x) = (g1(x);g2(x);:::;g2(x)) (on devrait écrire ce vecteur en colonne si on voulait se conformer en toute rigueur aux choix du cours) la dérivée degs"écrit : g

0(x) =0

B

BBB@@g

1@x 1@g 1@x

2@g1@x

p@g2@x 1@g 2@x

2@g2@x

p............ @g n@x 1@g n@x

2@gn@x

p1 C CCCA: Pour simplifier la présentation appelonsg= (g1;g2;:::;gn)un point deRn. C"est un abus de notation,gne désigne pas ici la fonctiongmais un vecteur, un point dansRn. La dérivée defen un pointgest donnée par la transposée de son gradient : f

0(g) =@f@g

1@f@g

2:::@f@g

n 4

L2 MIEE 2012-2013V ARUniv ersitéde Rennes 1

L"égalité matricielleh0(x) = (fg)0(x) =f0(g(x)):g0(x)signifie donc : @h@x 1@h@x

2:::@h@x

p =@f@g 1@f@g

2:::@f@g

n0 B

BBB@@g

1@x 1@g 1@x

2@g1@x

p@g2@x 1@g 2@x

2@g2@x

p............ @g n@x 1@g n@x

2@gn@x

p1 C CCCA:

Autrement dit pour touti= 1;:::;pon a

@h@x i=nX k=1@f@g k@g k@x i: Attention! Quandgkapparaît au dénominateur cela signifie seulement que l"on prend la

dérivée defpar rapport à sakième variable. Quand il apparaît au numérateurgkdésigne

lakième coordonnée deg: c"est alors une fonction.

Un exemple

Prenonsf:R3!Retg:R2!R3deux fonctions différentiables définies par f(x;y;z) = 2xy3(x+z); g(x;y) = (x+y4;y3x2;2x23y): On demande de calculer les dérivées partielles de la fonction de deux variablesh=fg.

Pour se ramener au théorème général et ne pas s"embrouiller, il est préférable de changer

les noms des variables dans l"expression def: f(g1;g2;g3) = 2g1g23(g1+g3): La formule de dérivation en chaîne donne alors @h@x =@f@g

1@(x+y4)@x

+@f@g

2@(y3x2)@x

+@f@g

3@(2x23y)@x

@h@y =@f@g

1@(x+y4)@y

+@f@g

2@(y3x2)@y

+@f@g

3@(2x23y)@y

Pour @h@x , on obtient : @h@x = (2g23):1 + 2g1:(6x) + (3):4x Exprimée en fonction dexetycette dérivée s"écrit : @h@x = 2y6x2312x(x+y4)12x=12xy418x2+ 2y12x3: Je vous laisse le calcul de la deuxième dérivée partielle dehen exercice. Remarque. On peut aussi écrire les choses sous la forme : @h@x =@f@x @(x+y4)@x +@f@y @(y3x2)@x +@f@z @(2x23y)@x

mais c"est un peu risqué. Il ne faut surtout pas oublier de prendre les valeurs des dérivées

partielles defau point(x+y4;y3x2;2x23y). 5quotesdbs_dbs29.pdfusesText_35
[PDF] Chapitre deux : Calcul de variation, calcul d 'incertitude 21

[PDF] Évaluation Différents mais égaux, égalité de droits et discrimination

[PDF] Les Régimes Douaniers - ABSM BURKINA

[PDF] les styles de leadership - Optimist Leaders Online

[PDF] Les 6 différents styles d évangélisation - Archdiocese of Saint Boniface

[PDF] 1 Sentiment riche et complexe - Psychaanalyse

[PDF] Lecture cycle 3 - Fiche 49 la lettre site - Professeur Phifix

[PDF] Stéréotypes et préjugés dans le monde du travail, mythe ou réalité ?

[PDF] Les prélèvement en bactériologie - Edimark

[PDF] Les différents types de projets - Francas LR

[PDF] LES PROTOZOAIRES

[PDF] LES EAUX USÉES

[PDF] Les types de textes

[PDF] Tissus conjonctifs - Remedeorg

[PDF] LES DIFFERENTES FORMES JURIDIQUES D 'UNE ENTREPRISE