[PDF] [PDF] fic00080pdf - Exo7 - Exercices de mathématiques





Previous PDF Next PDF



[PDF] Groupes sous-groupes ordre - Exo7 - Exercices de mathématiques

(b) Supposons que tout élément de E admette un inverse à gauche Montrer que E est un groupe Correction ? [002108] Exercice 9 Soit E 



[PDF] Morphisme sous-groupe distingué quotient - Exo7

Exercice 3 Montrer que le groupe des automorphismes du groupe Z/2Z×Z/2Z est isomorphe au groupe symétrique S3 Correction ? [002138] Exercice 4 Montrer qu' 



[PDF] Groupes - Exo7 - Cours de mathématiques

Enfin nous avons déjà vu que cette multiplication n'est pas commutative Mini-exercices 1 Montrer que (R? +×) est un groupe commutatif



[PDF] Théorèmes de Sylow - Exo7 - Exercices de mathématiques

(c) Donner la liste des classes d'isomorphisme de groupes d'ordre 12 Correction ? [002196] Exercice 8 Soient G un groupe et H un sous- 



[PDF] Structure de groupe - Permutations - Exo7

Le but de cette feuille d'exercices est de se familiariser avec la notion de groupe et d'apprendre à calculer la signature d'une permutation Exercice 1



[PDF] Action de groupe - Exo7 - Exercices de mathématiques

Soit H un sous-groupe distingué de Sn contenant une transposition Montrer que H = Sn Correction ? [002171] Exercice 7 Dans le groupe 



[PDF] ficallpdf - Exo7

251 300 00 Groupe quotient théorème de Lagrange Exercice 10 Le missionnaire et les cannibales Z Ces ensembles sont-ils des sous-groupes de Z?



[PDF] fic00099pdf - Exo7 - Exercices de mathématiques

(b) En déduire que (G×) est un sous-groupe de (GLn(R)×) isomorphe à (Sn?) (les matrices P? sont appelées « matrices de permutation ») 2 (Une utilisation 



[PDF] fic00080pdf - Exo7 - Exercices de mathématiques

Montrer que ? est une loi de groupe et que les groupes G et E sont isomorphes [002968] Exercice 2969 Transport de structure



[PDF] Groupes anneaux corps Pascal Lainé 1

Exercice 7 Soit ( ) un groupe et soit son élément neutre 1 Soient déterminer ( )



Groupes sous-groupes ordre - e Math

Exercice 31 Déterminer tous les sous-groupes du groupe symétrique S 3 Correction H [002131] Exercice 32 Montrer que dans un groupe d’ordre 35 il existe un élément d’ordre 5 et un élément d’ordre 7 Indication H Correction H [002132] Exercice 33 Soit Gun groupe d’ordre 2pavec pun nombre premier



Cours de mathématiques - Exo7

Les groupes sont à la base d’autres notions mathématiques comme les anneaux les corps les matrices les espaces vectoriels Mais vous les retrouvez aussi en arithmétique en géométrie en cryptographie! Nous allons introduire dans ce chapitre la notion de groupe puis celle de sous-groupe On étu-



cours-exo7/ch_groupespdf at master · exo7math - GitHub

Contribute to exo7math/cours-exo7 development by creating an account on GitHub cours-exo7 / groupes / ch_groupes pdf Go to file Go to file T; Go to line L; Copy path

Quels sont les ensembles et les opérations qui ont une structure de groupe ?

Voici des ensembles et des opérations bien connus qui ont une structure de groupe. (R¤,£) est un groupe commutatif,£est la multiplication habituelle. Véri?ons chacune despropriétés : Si x,y2¤ alorsx£y2R¤. Pour toutx,y,z2¤ alorsx£(y£z)Æ(x£y)£z, c’est l’associativité de la multiplication desnombres réels.

Quelle est la composition d’un groupe ?

Le groupe (Sn,±) s’ap-pelle legroupe des permutations(ou legroupe symétrique). La composition de deux bijections de{1,2, . . . ,n} est une bijection de{1,2, . . . ,n}. La loi est associative (par l’associativité de la composition des fonctions). L’élément neutre est l’identité. L’inverse d’une bijectionf est sa bijection réciproquef¡1.

Comment montrer qu’un ensemble est un groupe ?

Montrer qu’un ensemble est un groupe à partir de la dé?nition peut être assez long. Il existe uneautre technique, c’est de montrer qu’un sous-ensemble d’un groupe est lui-même un groupe : c’estla notion de sous-groupe. Soit (G,?) un groupe. e2H, pour toutx2H, on ax¡12H.

Comment calculer le sous-groupe d'un groupe ?

Par exemple si EÆ{2} et le groupe est (R¤,£), le sous-groupe engendré parEestHÆ{2njn2Z}. Pour le prouver : il faut montrer queHest un sous-groupe, que 22H, et que si H0est un autresous-groupe contenant 2 alorsH½H0. Autre exemple avec le groupe (Z,Å) : si E1Æ{2}alors le sous-groupe engendré parE1estH1Æ2Z.

Exo7

Exercices de Michel Quercia

Les exercices suivants ont été recueillis par mes étudiants (Maths-Sup, puis Maths-Spé) aux oraux des concours

d"entrée aux grandes écoles. Ils sont classés par thèmes correspondant grosso-modo aux différents chapitres des

programmes de Maths des CPGE, mais certains exercices anciens sont toutefois devenus hors programme. Pour

la plupart, les exercices sont accompagnés d"une solution plus ou moins succinte allant de la simple réponse au

calcul demandé à une rédaction complète pour les questions non immédiates.

Michel Quercia

Contents

I Algèbre générale

6

1 Applications6

2 Coefficients du binôme

8

3 Ensembles finis10

4 Nombres complexes13

5 Opérations18

6 Groupes19

7 Anneaux25

8 Relations d"équivalence

30

9 Relations d"ordre32

10 Propriétés deN35

11 Propriétés deR37

12 Suites récurrentes linéaires

38

13 Permutations39

II Arithmétique

41

14 Congruences41

15 Pgcd43

16 Relation de Bézout45

17 Factorisation en nombres premiers

46
1

18 Propriétés deQ47

19 Propriétés deZ=nZ49

III Polynômes

51

20 Polynômes51

21 Division euclidienne55

22 Racines de polynômes

58

23 Polynômes irréductibles

62

24 Fonctions symétriques

63

25 Fractions rationnelles

65

26 Décompositions de fractions rationnelles

66

27 Décomposition en éléments simples

69

28 Division suivant les puissances croissantes

70

IV Algèbre linéaire

71

29 Espaces vectoriels71

30 Applications linéaires

73

31 Espaces vectoriels de dimension finie

74

32 Applications linéaires en dimension finie

76

33 Matrices81

34 Calcul matriciel88

35 Équations linéaires91

36 Déterminants94

37 Calculs de déterminants

98

38 Rang de matrices102

39 Projections105

40 Réductions des endomorphismes

106

40.1 Diagonalisation

106

40.2 Calculs

108

40.3 Espaces fonctionnels

111

40.4 Polynômes caractéristique

112

40.5 Polynômes annulateur

115

40.6 Endomorphismes de composition

119

40.7 Similitude

121
2

40.8 Usage de la réduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

40.9 Réduction par blocs

124

40.10Image et noyau

125

40.11Sous-espaces stables

126

40.12Trigonalisation

127

41 Dualité128

42 Sommes directes132

V Algèbre bilinéaire

134

43 Produit scalaire134

44 Espace vectoriel euclidien orienté de dimension 3

140

45 Formes quadratiques

144

46 Transformations orthogonales

147

47 Endomorphismes auto-adjoints

151

48 Problèmes matriciels

157

49 Espaces vectoriels hermitiens

160

VI Fonctions d"une variable

163

50 Fonctions continues

163

51 Fonctions monotones

167

52 Fonctions usuelles169

53 Fonctions circulaires inverses

173

VII Calcul différentiel

175

54 Dérivation175

55 Fonctions convexes182

56 Formules de Taylor185

57 Calculs de développements limités

188

58 Calculs de limites par développements limités

190

59 Développements limités théoriques

192

60 Développements limités implicites

193

61 Équivalents195

62 Équations différentielles linéaires (I)

196
3

63 Équations différentielles linéaires (II)203

64 Équations différentielles non linéaires (I)

207

65 Équations différentielles non linéaires (II)

208

66 Dérivées partielles212

67 Étude d"extrémums

221

68 Équations aux dérivées partielles

223

VIII Calcul intégral

225

69 Intégrale de Riemann

226

70 Primitives232

71 Intégrale généralisée

233

72 Intégrale dépendant d"un paramètre

240

73 Intégrale multiple250

IX Séries254

74 Fonction exponentielle complexe

254

75 Séries numérique255

76 Familles sommables

266

77 Suites et séries de fonctions

269

78 Séries entières278

78.1 Rayon de convergence

278

78.2 Développement, sommation

281

78.3 Étude au bord

284

78.4 Équations différentielles

285

78.5 Intégrales

287

78.6 Analycité

288

78.7 Divers

289

79 Séries de Fourier290

79.1 Développements

290

79.2 Calcul de séries

291

79.3 Coefficients de Fourier

292

79.4 Relation de Parseval

293

79.5 Convergence

294

79.6 Intégrale de Fourier

296

79.7 Divers

296

X Topologie297

4

80 Suites convergentes298

81 Suitesun+1=f(un)303

82 Topologie deR305

83 Topologie dans les espaces métriques

306

84 Topologie dans les espaces vectoriels normés

307

84.1 Géométrie

307

84.2 Suites

309

84.3 Normes

310

84.4 Topologie

313

84.5 Fonctions continues

315

84.6 Applications linéaires continues

318

84.7 Connexité

321

85 Compacité322

86 Connexité324

87 Espaces complets324

88 Fonctions vectorielles

325

XI Géométrie

327

89 Sous-espaces affines

327

90 Applications affines329

91 Barycentres331

92 Propriétés des triangles

332

93 Coniques334

93.1 Parabole

334

93.2 Ellipse

336

93.3 Hyperbole

336

94 Quadriques337

95 Torseurs340

96 Géométrie euclidienne en dimension 2

341

97 Géométrie euclidienne en dimension 3

343

98 Courbes paramétrées

346

99 Courbes en polaires

348

100Courbes définies par une condition

349

101Branches infinies351

102Points de rebroussement

352
5

103Enveloppes352

104Rectification, courbure

354

105Courbes dans l"espace

357

106Surfaces paramétrées

357

Part I

Algèbre générale

1 Applications

Exercice 2889Images directes et réciproquesSoitf:E!Fune application,A;A0EetB;B0F. 1.

Simplifier f(f1(f(A)))etf1(f(f1(B))).

2.

Montrer que f(A\f1(B)) =f(A)\B.

3.

Comparer f(ADA0)etf(A)Df(A0).

4.

Comparer f1(BDB0)etf1(B)Df1(B0).

5. A quelle condition sur fa-t-on :8AE;f(EnA) =Fnf(A)? 1.

Qu"est-ce que f(?)?f(En(A[B))?

2.

A quelle condition sur AetB,fest-elle injective ?

3. Est-ce que le couple (?;B)possède un antécédent parf? 4. A quelle condition sur AetB,fest-elle surjective ? nfois, etf0=idE.

SoitAE,An=fn(A), etB=S

n2NAn. 1.

Montrer que f(B)B.

2. Montrer que Best la plus petite partie deEstable parfet contenantA. g=fhsi et seulement si :g(G)f(F).

A quelle conditionhest-elle unique ?

6

2.Soit f:E!Fetg:E!Gdeux applications. Montrer qu"il existe une applicationh:F!Gtelle que

g=hfsi et seulement si :8x;y2E;f(x) =f(y))g(x) =g(y).

A quelle conditionhest-elle unique ?

Montrer que :

1)fest injective()Fest injective()Yest surjective.

nouvelles applications : f :EG!FG;j7!fjetfGF!GE;j7!jf

Montrer que :

1.fest injective()fest injective()fest surjective.

2.fest surjective()fest surjective()fest injective.

[hgf,gfhinjectives etfhgsurjective] SoientEf!Fg!Gh!Etrois applications telles quehgf 1.

Pour AE, montrer quef1(f(A))2S.

2. Montrer que Sest stable par intersection et réunion. 3. Soient X2SetAEtels queX\A=?. Montrer queX\f1(f(A)) =?. 4. Soient XetY2S. Montrer queXetYnXappartienent àS. 5. Montrer que l"application S!P(f(E));A7!f(A)est une bijection. La conjugaison parfest l"applicationFf:EE!EE;f7!fff1 1.

Montrer que Ffest une bijection deEE.

2.

Simplifier FfFg.

7

3.Simplifier Ff(f)Ff(y).

4. Soient I,S, les sous-ensembles deEEconstitués des injections et des surjections. Montrer queIet

Ssont invariants parFf.

5.

Lorsque fest bijective, qu"est-ce que

F f(f) 1? Eest plus puissant queFs"il existe une surjectionf:E!F EetFsont équipotents s"il existe une bijectionf:E!F. 1. Démontrer que : ( Eest moins puissant queF)()(Fest plus puissant queE). 2. Montrer que N,N,fn2Ntqnest divisible par 3g, etZsont deux à deux équipotents. 3.

Démontrer que Eest moins puissant queP(E).

quotesdbs_dbs44.pdfusesText_44
[PDF] groupe algebre

[PDF] montrer qu'un groupe est commutatif

[PDF] structure de groupe exercices corrigés

[PDF] calcul rdm

[PDF] calcul mfz flexion

[PDF] rdm exercices corrigés pdf

[PDF] cours rdm 1ere année genie civil

[PDF] un losange est un parallélogramme

[PDF] résistance des matériaux cours

[PDF] phenotype erythrocytaire definition

[PDF] groupe helsinki

[PDF] groupe sanguin erythrocytaire

[PDF] groupes sanguins bombay

[PDF] phénotype kell négatif

[PDF] grue liebherr 1500 tonnes