[PDF] PROPRIÉTÉS DES SECTIONS Le calcul du moment d'





Previous PDF Next PDF



Centre gravité du TRIANGLE

calculer les coordonnéesdu centre de gravité. Nous Centre de gravité du triangle quelconque. Le centre de gravité ... un triangle en deux triangles de.



PROPRIÉTÉS DES SECTIONS

Le calcul du moment d'inertie passe toujours par celui du centre de gravité. Dans cet exemple le centre de gravité avait.



Mécanique générale (2). Centres de gravité travail mécanique

Le centre de gravité de la surface d'un triangle est au point de concours des médianes. évidemment sur l'axe Ox ; il suffit de calculer son abscisse X.



CHAPITRE 4. CARACTÉRISTIQUES GÉOMÉTRIQUES DES

10 sept. 2022 Définition et recherche du centre de gravité . ... calculer les moments d'inertie sont en général des axes.



CARACTERISTIQUES DES SECTIONS PLANES

Cette relation permet aussi de calculer le moment statique d'une section connaissant la position de son centre de gravité. MOMENT D'INERTIE RAYON DE 



FICHE DE COURS:

être capable de placer le centre de gravite d'un triangle connaissant une médiane ;. ? être capable d'utiliser les droites remarquables pour démontrer.



Distances du centre de gravité aux points remarquables du triangle

qui joint le centre de gravité G au centre I du cercle. Ann.de Uathcmat 3e serie



FERRIOT - Sur les centres de gravité

Le centre de gravité de chacun de ces triangles étant aux7 du rayon le centrede gravité du secteur n'est autre chose que le centre de gravité d'un arc 



Généralisation de la notion de centre de gravité dun triangle : les

Pour conclure Newton a été un grand scientifique dans l'humanité et sa célèbre formule a pu simplifier certains calculs et a même été utilisée dans le calcul 



82 exercices de mathématiques pour 2nde

4 oct. 2015 I.6 Calcul sur les puissances (avec des lettres) . ... 5 Calculer les coordonnées du centre de gravité G du triangle BAD.



[PDF] Centre gravité du TRIANGLE

En effet chaque médiane partage un triangle en deux triangles de même aire Le centre de gravité est situé au 2/3 de la médiane en partant du sommet CG = 2/ 



[PDF] Mécanique générale (2) Centres de gravité travail - Numilog

Le centre de gravité de la surface d'un triangle est au point de concours des médianes Le centre de gravité de la surface de la sphère du volume de la



[PDF] 3 Centre de gravité

C'est le point d'application de la résultante des forces de gravite ou de pesanteur Le centre de gravite d'un rectangle d'un triangle et un cercle :



[PDF] Centre de gravité d un triangle démonstration pdf

Centre de gravité d' un triangle démonstration pdf Centre gravité du TRIANGLE Centre géométrique isobarycentre Centre de masse centre d'inertie Centroid 



Centre de gravité du triangle - ChronoMath

Pour tout point M du plan le centre de gravité G du triangle ABC est l'unique point minimisant MA2 + MB2 + MC2 somme des carrés des distances de M aux sommets 



[PDF] La géométrie du triangle

22 déc 2007 · Médianes centre de gravité d'un triangle Ce document PDF : http://www debart fr/ pdf /geometrie_triangle pdf Grâce au calcul :



[PPT] Caractérisation vectorielle du centre de gravité dun triangle

Retrouvons la position du centre de gravité à l'aide d'un calcul vectoriel Le centre de gravité du triangle est situé aux deux tiers de la médiane en 



Centre de gravité du triangle - Gerard Villemin - Free

Nous allons positionner le centre de gravité énoncer quelques relations géométriques et calculer les coordonnées du centre de gravité



[PDF] Exercices de mécanique 2 - Centre de gravité

Exercice 1 Une sphère de rayon r est « retirée » d'une sphère de rayon R>r La distance entre les centres des sphères est a Trouver le centre de gravité 

  • Comment calculer le centre de gravité d'un triangle ?

    Le centre de gravité (G) du triangle quelconque se trouve à l'intersection des trois médianes (AMA , BMB , CMC). Le centre de gravité est situé au 2/3 de la médiane en partant du sommet. au (1/3, 2/3) de la médiane.
  • Comment calcule le centre de gravité ?

    Si un objet est constitué d'un ensemble de masses ponctuelles, alors si nous additionnons le produit de chacune de ces masses avec la distance de cet élément de masse de l'axe de rotation, puis divisons cette somme par la somme de toutes les masses de notre système, alors cette fraction est égale au centre de gravité.
  • Comment trouver le centre de gravité d'un triangle rectangle ?

    Le centre de gravité d'un triangle rectangle se trouve au tiers des côtés de l'angle droit. Cette propriété facilite le calcul. Notons que le centre de gravité de la ligne polygonale homogène formée par les côtés du triangle est, lui, le centre du cercle inscrit dans le triangle médian.
  • Le point d'intersection des trois médiatrices d'un triangle se trouve à égale distance des trois sommets du triangle. Ce point est donc le centre du cercle circonscrit au triangle.
PROPRIÉTÉS DES SECTIONS 8

PROPRIÉTÉS DES SECTIONS

8.1.1 Généralités

Dans l'étude des déflexions des poutres ainsi que du flambage des colonnes, on est amené à utiliser

l'une ou l'autre des propriétés des sections droites, qui sont des caractéristiques purement

géométriques. On retrouve: • Axe neutre d'une surface; • Centre de gravité d'une surface; • Moment statique d'une surface; • Moment d'inertie; • Module de section; • Rayon de giration.

8.1.2 Surface neutre et axe neutre

Lorsqu'une poutre est soumise à des forces qui tendent à la courber, les fibres situées a u-dessus (ou

au-dessous) d'un certain plan de la poutre sont en compression et elles se raccourcissent, tandis que

les fibres situées au-dessous (ou au-dessus) de ce plan sont tendues et elles s'allongent. Le plan

intermédiaire en question est appelé surface neutre de la poutre (voir figure 8.1).

Pour une section droite de la poutre, la li

gne correspondant à la surface neutre s'appelle axe neutre

de cette section. L'axe neutre passe toujours par un point particulier "cg" de la section droite d'une

poutre nommé centroïde ou centre de gravité de cette section. 137
Axe neutre (A.N.): C'est le plan qui ne subit aucun allongement pendant la flexion d'une poutre.

Fig. 8.1

L'axe neutre A.N. passe par le centre de gravité ou centroïde.

8.1.3 Centre de gravité (cg)

Le centre de gravité (cg) ou centroïde d'un corps ou d'une surface est un point imaginaire où toute

cette surface peut être considérée comme concentrée. C'est aussi le point où le poids d'un corps est

concentré.

Si un corps est homogène, c'est-à-dire constitué d'un seul matériau, le cg dépend seulement de la

forme du corps. Si un corps possède un axe de symétrie, son cg est situé sur cet axe (fig. 8.2).

Fig. 8.2

138

L'axe de symétrie partage le corps en deux parties de même surface, de même poids. Si un corps

possède au moins deux axes de symétrie (ou médiane), son cg se trouve au point d'intersection de

ces axes. Le cg n'est pas toujours dans la matière. La figure 8.3 illustre le centre de gravité de

différentes surfaces régulièrement utilisées.

Fig. 8.3

La position de quelques autres surfaces est donnée dans les tableaux à la fin du chapitre. D'autres cas

particuliers peuvent être retrouvés dans les "Handbooks" ou livres spécialisées. 139

8.2 MOMENT D'INERTIE

8.2.1 Moment d'inertie

Considérons une surface plane A dans laquelle

un élément de surface a i infiniment petit est indiqué. Cet élément se trouve à une distance d i d'un axe quelconque "o". On appelle moment d'inertie I i de l'élément de surface a i par rapport à l'axe considéré "o", le produit de cet élément par le carré de la distance d i A a i d i o

Fig. 8.7

I i(o) = a i x d i 2 (8.3 a) Si la surface A est subdivisée en N éléments infiniment petits a 1 , a 2 , a 3 , ... , a N dont les distances respectives à l'axe sont d 1 , d 2 , d 3 , ... , d N alors le moment d'inertie de cette surface par rapport au même axe "o" est donné par la relation suivante: I o = I 1(o) + I 2(o) + ... + I N(o) I o = a 1 d 1 2 + a 2 d 2 2 + ... + a N d N 2 I o = a i d i 2 [m 4 ] (8.3) Le moment d'inertie des sections droites est d'une grande importance dans la conception des poutres

et colonnes. Les tableaux à la fin du chapitre portant sur les propriétés des sections donnent des

valeurs des moments d'inertie de plusieurs profilés d'acier fréquemment utilisés dans la construction.

140

Les autres moments d'inertie peuvent être trouvés dans des "handbooks". La figure suivante donne

quelques moments d'inertie de figures communes. cg axe b h I cg b h 3 12 cg axe I cg d 4 64
b h cg axe I cg b h 3 36

Fig. 8.8

8.2.2 Théorème des axes parallèles

Si on connaît le moment d'inertie d'une surface par rapport à un axe qui passe par son centre de

gravité, on peut connaître son moment d'inertie par rapport à tout autre axe parallèle à ce dernier. Il

suffit d'ajouter la quantité As 2

à son I

cg

Théorème des axes parallèles:

I = I cg + As 2 (8.4) où s = distance entre l'axe choisi et l'axe qui passe par le cg.

A = aire de la section

I cg = moment d'inertie par rapport à un axe qui passe par le cg. 141
EXEMPLE 8.2: Calculer le moment d'inertie du rectangle ci-dessous par rapport à l'axe z passant par sa base.

Solution:

I z = I cg + As 2 b h 3 12 + (bh) h 2 2 b h 3 12 bh 3 4 b h 3 3 cg b h z h/2

Fig. 8.9

Pour les sections complexes ou composées de plusieurs sections simples, le moment d'inertie est

égal à la somme des moments d'inertie de chacune des sections. Si la surface composée possède une

surface creuse, le moment de la section creuse est alors négatif. Dans le cas des surfaces composées,

le théorème des axes parallèles est alors très utile. Comme par exemple, la section en T du premier

exemple, si on veut savoir le moment d'inertie de la surface totale, on doit utiliser le théorème, c'est

ce que nous ferons dans le prochain exemple. EXEMPLE 8.3: Calculer le moment d'inertie par rapport à l'axe neutre de la section en T ci- dessous. (fig. 8.10)

Solution:

Nous avions déjà trouvé le cg de la surface totale dans le premier exemple, on sait que l'axe neutre passe par le centre de gravité. Maintenant on veut le moment d'inertie par rapport à cet axe. I AN = I

AN(surface 1)

+ I

AN(surface 2)

I

AN(surface 1)

= I cg1 + A 1 s 1 2 I

AN(surface 2)

= I cg2 + A 2 s 2 2 1 cm

4,5 cm

A 2

2,59 cm

2 cm 5 cm 6 cm A.N. cg A 1

Fig. 8.10

142
I cg1

2 cm (5 cm)

3 12 = 20,833 cm 4 et I cg2

6 cm (2 cm)

3 12 = 4 cm 4 I

AN(surf 1)

= 20,833 cm 4 + (2 cm x 5 cm)(1,91 cm) 2 = 20,833 cm 4 + 36,481 cm 4 = 57,314 cm 4 I

AN(surf 2)

= 4 cm 4 + (2 cm x 6 cm)(1,59 cm) 2 = 4 cm 4 + 30,337 cm 4 = 34,337 cm 4

Donc I

AN = 57,314 cm 4 + 34,337 cm 4 = 91,651 cm 4

Le calcul du moment d'inertie passe toujours par celui du centre de gravité. Dans cet exemple, le centre de gravité avait

déjà été trouvé, donc nous ne l'avons pas refait.

8.3 MODULE DE SECTION ET RAYON DE GIRATION

8.3.1 Module de section

Une propriété des sections fréquemment employée dans la conception des poutre est le module de

section. Il s'emploie notamment dans les calculs des contraintes normales dues à la flexion. Par

contre on s'en sert surtout si la surface est symétrique par rapport à l'axe horizontal, c'est-à-dire que

son axe neutre est dans le plan de symétrie de la figure. Axe

Neutre

c c c c

Fig. 8.11

On appelle S le module de section et on le définit: S = I c m 3 (8.5) où I = moment d'inertie de la surface par rapport à l'AN c = distance perpendiculaire entre l'AN et le point le plus éloigné de la section. 143

À cause de la symétrie, S est le même que l'on mesure en haut ou en bas. On peut quand même

calculer le module de section non symétrique en utilisant la distance la plus éloignée de l'axe neutre.

Les tableaux situés à la fin du chapitre donne les valeurs de S pour différentes surfaces et profilés

utilisés couramment.

8.3.2 Rayon de giration

Dans l'analyse des colonnes, on utilise constamment une caractéristique nommée rayon de giration.

Le rayon de giration est la distance entre un axe et un point où on peut considérer que toute la

surface est concentrée de telle sorte que son moment d'inertie demeure le même.

I = A d

2 = A r 2

On appelle "r" le rayon de giration. D'où:

r = I A m (8.6) où I = moment d'inertie de la surface au cg

A = aire de la surface

EXEMPLE 8.4: Calculer les rayons de giration horizontaux et verticaux de la figure ci dessous.

Solution:

I cgx

6 cm (2 cm)

3 12 = 4 cm 4

A = 12 cm

2 r x 4 cm 4 12 cm 2 = 0,58 cm I cgy

2 cm (6 cm)

3 12 = 36 cm 4 cg 2 cm 6 cm A x

0,58 cm

quotesdbs_dbs29.pdfusesText_35
[PDF] hauteurs d'un triangle

[PDF] point de concours des médiatrices

[PDF] propriété médiane triangle rectangle

[PDF] centre de gravité du corps humain definition

[PDF] centre de gravité homme femme

[PDF] centre de gravité d'une personne

[PDF] centre de gravité équilibre

[PDF] centre de masse corps humain

[PDF] connaitre son centre de gravité

[PDF] polygone de sustentation

[PDF] comment determiner l'axe de symetrie d'une fonction

[PDF] axe de symétrie d'une fonction exercice

[PDF] centre de symétrie d'une fonction formule

[PDF] exercices corrigés sur la théorie des groupes pdf

[PDF] montrer qu'une fonction admet un axe de symétrie