[PDF] [PDF] Groupes Examen final + corrigé





Previous PDF Next PDF



Groupes Examen final + corrigé

May 11 2016 Les questions de cet exercice sont indépendantes. On attend une rédaction concise et précise. 1. Soit G un groupe abélien



MAT 2250 Introduction à la théorie des groupes

A Théorie des groupes avec le calcul formel Heureusement si on la connaît



Algèbre 1

Corrigé des exercices du chapitre 1 Les chapitres 1 à 5 portent sur la théorie des groupes. ... Jean Delcourt Théorie des groupes





MéTHodeS eT exerciceS

thèmes abordés dans les exercices Tous les exercices sont corrigés de fa- çon détaillée. ... d'un groupe



2e ÉDITION

Jan 1 2020 Bien sûr



Cours dalgèbre : groupes monogenes groupes symétriques

petit à petit a été construite la théorie de groupes. Exercice 1.4.3 Soient m ( ?" et G un groupe abélien fini. Lgélément neutre de G est noté e.



GROUPES Exercices corrigés de Algebra Hungerford

https://math.umons.ac.be/ga/Groupes02.pdf



livre-algebre-1.pdf - Exo7 - Cours de mathématiques

d'une première structure algébrique avec la notion de groupe. site Exo7 toutes les vidéos correspondant à ce cours



fic00020.pdf

Exercice 28. Déterminer tous les groupes d'ordre ? 5. En déduire qu'un groupe non commutatif possède au moins 6 élé- ments. Montrer que le groupe symétrique S3 



[PDF] Groupes Examen final + corrigé

11 mai 2016 · Les questions de cet exercice sont indépendantes On attend une rédaction concise et précise 1 Soit G un groupe abélien a ? G d'ordre m et 



[PDF] exercices sur les groupes

Exercice 1 Groupes diédraux Soit Pn un polygone régulier du plan à n cotés (représenté par exemple par les racines n-ièmes de l'unité dans le plan 



[PDF] MAT 2250 Introduction à la théorie des groupes - Christophe Hohlweg

A Théorie des groupes avec le calcul formel 133 B Rappels sur les ensembles et fonctions 135 B 1 Le langage ensembliste



[PDF] Éléments de théorie des groupes Solutions des exercices

8 nov 2022 · Éléments de théorie des groupes Solutions des exercices c) Supposons n non premier Il existe deux entiers k > 1 et l > 1 tels que n = kl



[PDF] Groupes anneaux corps Pascal Lainé 1

Exercice 1 1 On munit de la loi de composition interne définie par : ( )( ) Montrer que est commutative non associative et que est élément neutre



[PDF] GROUPES Exercices corrigés de Algebra Hungerford Thomas W

Ces sous- groupes sont donc cycliques et par conséquent en vertu de l'exercice précédent S3 est cyclique ce qui est absurde 5 Page 6 6 CHAPTER 1



[PDF] Algèbre 1 - Cécile Armana

Annexe 1 : relation d'équivalence ensemble quotient Corrigé des exercices du chapitre 1 Les chapitres 1 à 5 portent sur la théorie des groupes



[PDF] MéTHodeS eT exerciceS - Dunod

Pour bien utiliser cet ouvrage iv 1 Groupes 1 2 Anneaux arithmétique colles entièrement corrigés Tous les exercices sont corrigés de fa-



[PDF] Corrigé de la feuille dexercices 1

Corrigé de la feuille d'exercices 1 Exercice 1 Etude des sous-groupes de Z/nZ: (i) Montrez que tout groupe cyclique d'ordre n est isomorphe `a Z/nZ;

:

L2 parcours spécial - Algèbre 11 mai 2016

Groupes

Examen final + corrigé

Durée: 2 heures

Documents, calculatrice ou téléphone interdits. Le barême est sur 20 + 2 points bonus (partie

III).

I - Exemples (5 points)

Justifier chacun des exemples en une ou deux phrases.

1. Donner un exemple d"élément d"ordre 15 dans le groupe symétriqueS8.

Solution. (1 point)

σ= (12345)(678)convient, car l"ordre d"une permutation est le PPCM des ordres des cycles de sa décomposition canonique.

2. Donner un exemple de deux éléments d"ordre 3 non conjugués dans le groupe symétrique

S 6.

Solution. (1 point)

(123)et(123)(456)sont deux éléments d"ordre 3 dansS6, qui sont non conjugués car de types différents.

3. Donner un exemple de groupeGet de deux élémentsa,b?Gd"ordre 2 tel queabsoit

d"ordre 3.

Solution. (1 point)

On peut prendreG=S3,a= (12)etb= (23), on a bienab= (123)d"ordre 3.

4. Donner un exemple d"élément d"ordre 4 dans le groupeGL2(R)des matrices2×2in-

versibles à coefficients réels.

Solution. (1 point)

La matrice?0-1

1 0? convient, elle correspond à la rotation d"angleπ/2dans le planR2.

5. Donner un exemple d"élément d"ordre infini dans le groupeSO2(R)des rotations du plan.

Solution. (1 point)

Toute matrice de la forme?cosθ-sinθ

sinθcosθ? avecθ= 2παetα??Qconvient, en effet les rotations d"ordre fini du plan sont exactement les rotations d"angle un multiple rationnel de2π. NB: c"est bienαqui doit être irrationnel, et pasθlui-même. Par exempleθ=πest irrationnel mais correspond à une rotation d"ordre 2...

II - Groupes abéliens (6 points)

Les questions de cet exercice sont indépendantes. On attend une rédaction concise et précise.

1. SoitGun groupe abélien,a?Gd"ordrem, etb?Gd"ordren, avecmetnpremiers entre

eux. Montrer queabest d"ordremn.

Solution. (2 points)

Notonsdl"ordre deab: par définition,dest le plus petit entier≥1tel que(ab)d= 1.

D"une part, commeab=ba, on a

(ab)mn=amnbmn= (am)n(bn)m= 1n1m= 1. D"autre part (très peu ont su faire cette deuxième partie de l"argument...)

1 = (ab)d=adbd

impliquead=b-dappartient à?a?∩?b?. Comme?a?est d"ordrem, et?b?est d"ordren, avecm,npremiers entre eux, on en déduit par le théorème de Lagrange que?a?∩?b?={1}, doncad=bd=1, et finalementdest un multiple commun demetn, en particulierd≥mn.

Conclusion :d=mn.

2. SoitGun groupe dont tous les éléments (à part le neutre) sont d"ordre 2. Montrer queG

est abélien.

Solution. (2 points)

Soita,b?G. Par hypothèse l"élémentabest d"ordre 2 (ou 1), on a donc

1 = (ab)2=abab,

et doncab=b-1a-1. De plusa-1=aetb-1=b(à nouveau cara2=b2= 1) donc ab=b-1a-1=ba, autrement ditaetbcommutent.

3. SoitRle groupe additif des nombres réels, etU?C?le sous-groupe multiplicatif des

complexes de module 1. Expliciter un morphisme surjectif deRversU, et en déduire que Uest isomorphe à un quotient deRque l"on précisera.

Solution. (2 points)

On considère l"application suivante

?:R→U x?→eix D"une part?est un morphisme car?(x+y)=ei(x+y)=eixeiy=?(x)?(y), et?est surjectif car tout complexe de module 1 s"écrit sous la formeeix. Le noyau de?est égal à ker?={x?R;eix= 1}= 2πZ

où2πZdésigne le sous-groupe des multiples entiers de2π. Par le théorème d"isomorphisme,

on en déduit queU?R/2πZ.

III - Centre d"unp-groupe (3 points)

Il y avait une erreur d"énoncé dans les deux dernières questions de cette partie (errare humanum

est...). Ci-dessous pour info les énoncés corrects, et concernant le barême j"ai neutralisé ces

deux questions (avec 0.5 ou 1 point bonus pour ceux qui m"ont dit des choses correctes en dépit

de l"énoncé incorrect, et 2 points bonus pour l"unique personne qui a repéré qu"il y avait un

problème avec l"énoncé...)

1. Rappeler la définition générale du centreZ(G)d"un groupeG.

Solution. (1 point)

Z(G) ={x?G;gx=xgpour toutg?G}

={x?G;gxg-1=xpour toutg?G}. Soitpun nombre premier, etGunp-groupe non trivial, c"est-à-dire un groupe d"ordre|G|=pa aveca≥1.

2. Écrire une action deGsur lui-même de façon à ce que les orbites singleton soit précisément

les éléments du centreZ(G).

Solution. (1 point)

On considère l"action

G×G→G

(g,x)?→gxg-1 On voit queOrb(x) ={x}équivaut àgxg-1=xpour toutg?G, autrement dit équivaut à x? Z(G).

3. Montrer que|Z(G)|est congru à 0 modulop. Que cela implique-t-il surZ(G)?

Solution. (1 point)

Par la formule|G|=|Stab(x)|·|Orb(x)|, les orbites de l"action sont de cardinal ou bien 1 ou bienpaaveca≥1. En écrivantGsomme une union d"orbites, on écrit|G|comme la somme des cardinaux des orbites. En considérant cette égalité modulop, on obtient |G| ≡ |Z(G)|modp CommeGest un p-groupe non trivial,|G| ≡0 modp, on obtient donc|Z(G)| ≡0 modp, ce qui implique queZ(G)?={1}. Dans les deux dernières questions on suppose queGest un groupe d"ordrep2non cyclique.

4. Montrer queZ(G)contient un sous-groupeKisomorphe àZ/pZ.

Solution. (0 point)

Soitg? Z(G)\{1}, un telgexiste par la question précédente. PosonsK=?g?. Par le théorème de Lagrange,gest d"ordrepoup2. Mais ordre(g)=p2impliquerait queG=Kest cyclique de générateurg, contrairement à l"hypothèse. Doncgest d"ordrep, etK?Z/pZ.

5. Soith?Gun élément non contenu dansK. Donner l"ordre deh, et montrer qu"on a une

structure de produit directG=K×?h?.

Solution. (0 point)

hest d"ordrep:h?= 1car sinon on auraith?K, ethn"est pas d"ordrep2sinonGserait cylique engendré parh.K∩?h?étant un sous-groupe strict de?h?, par Lagrange il est trivial. De plus le groupe engendré parKethcontient strictementK, par Lagrange à nouveau il est égal àG. Enfing?h?g-1=?h?pour tout élément de?h?, pour tout élément deK? Z(G), et donc finalement pour tout élément deG: ainsi?h?est distingué dans

G, et on conclut queG=K×?h?.

IV - Le groupe du tétraèdre (6 points)

SoitTun tétraèdre régulier deR3, on noteraA1,A2,A3,A4ses sommets. On rappelle que la notationIsom(T)désigne le groupe des isométries deR3préservantT.

1. Expliciter de façon synthétique (sans faire de listes !) un morphisme injectif?deIsom(T)

vers le groupe symétriqueS4(et justifier l"injectivité).

Solution. (2 points)

Un morphisme deIsom(T)versS4est donné par

?: Isom(T)→S4 f?→σ oùf(Ai) =Aσ(i). Ce morphisme est injectif car toutf?Isom(T)peut être vu comme un élément deGL3(R)en prenant le centre du tétraèdre comme origine, et sif(Ai) =Aipour i= 1,2,3, ces trois points formant une base deR3, on en déduit quef=id.

2. Quelle est la préimage de la transposition(12)par le morphisme?? Et celle de la

permutation(12)(34)?

Solution. (1 point)

SoitPle plan passant parA3,A4et le milieu du segment[A1,A2]. Alors la symétrie orthogonaleSPde planPfixeA3,A4et échangeA1etA2, autrement dit?(SP) = (12). Par ailleurs soitDla droite passant par les milieux des segments[A1,A2]et[A3,A4], alors la rotationRD,πd"axeDet d"angleπéchangeA1etA2d"une part,A3etA4d"autre part, donc?(RD,π) = (12)(34).

3. Montrer que?est un isomorphisme entreIsom(T)etS4.

Solution. (1 point)

On a vu à la question précédente que(12)est dans l"image de?, on montre de même que toute transposition(i, j)est dans l"image de?. Comme les transpositions engendrent S

4, on en déduit que l"image de?estS4. Ainsi?est injective et surjective, c"est un

isomorphisme.

4. En utilisant l"action deIsom(T)sur les paires d"arêtes opposées deT, montrer qu"il existe

un morphisme surjectif deIsom(T)versS3.

Solution. (1 point)

NotonsP1,P2,P3les 3 paires d"arêtes opposées. On définit un morphisme deIsom(T) versS3en posant

ψ: Isom(T)→S3

f?→σ oùf(Pi)=Pσ(i). Une rotationRd"angle2π/3et d"axe passant par un sommet et le milieu de la face opposée est envoyé parψsur un3-cycle. D"autre part la symétrie orthogonale S PoùPest le plan passant parA3,A4et le milieu du segment[A1,A2]est envoyé sur une transposition. CommeS3est engendré par tout choix d"une transposition et d"un 3-cycle, on en déduit queψest surjectif.

5. En déduire queS3est isomorphe à un quotient deS4, en précisant le sous-groupe distingué

mis en jeu dans ce quotient.

Solution. (1 point)

On applique le théorème d"isomorphisme au morphisme surjectifψ◦?obtenu en composant les morphismes des questions précédentes. On obtient S

4/ker(ψ◦?)?S3

Doncker(ψ◦?)est un sous-groupe distingué deS4d"ordre24/6 = 4, c"est donc le sous- groupe{id,(12)(34),(13)(24),(14)(23)}.quotesdbs_dbs13.pdfusesText_19
[PDF] montrer qu'une fonction admet un axe de symétrie

[PDF] axe de symétrie d'une fonction pdf

[PDF] définition d'un axe de symétrie

[PDF] définition symétrie axiale

[PDF] panneau routier avec 3 axes de symétrie

[PDF] axe de symétrie d'une fonction du second degré

[PDF] axe de symétrie et panneaux de signalisation

[PDF] qu'est ce que le plan obésité

[PDF] architecte centre pompidou paris

[PDF] description du centre pompidou

[PDF] regulation chimique de la respiration

[PDF] centre pneumotaxique

[PDF] régulation nerveuse de la respiration

[PDF] le réflexe de hering breuer

[PDF] les centres d'impulsion de la mondialisation composition