[PDF] Exercices corrigés Soit une file d'attente à





Previous PDF Next PDF



Terminale S - Probabilités Exercices corrigés

amis A et B se trouvent dans cette file d'attente. 1. Quelle est la probabilité que les deux amis soient situés l'un derrière l'autre ?



Untitled

Examen du 19 mai 2009 Co. - corrige. Université Paris Diderot Selon les notations de Kenda c'est une file d'attente avec.



Exercices corrigés

Soit une file d'attente à un guichet. Le nombre de clients dans la file suit une loi de. Poisson de paramètre ?. La probabilité que le client puisse obtenir le 



Exercices et probl`emes corrigés en C++

On consid`ere une classe File représentant une file d'attente possédant trois membres données : • gens de type Personne * représentera un tableau d'objets 



Examen ModSim 18-19

12 sept. 2019 Exercice 01 (Réseau de files d'attente : 15 pts) ... (a) Le taux d'arrivé effectif pour chaque file d'attente. ... Corrigé-type + Barème.



gestion dune file dattente - pdfcoffee.com

Une file d'attente ou une queue



Files dattente

Une file d'attente est équilibrée si et seulement si ? est strictement inférieur à 1. 1.3 Equations de Chapman-Kolmogorov. Nous commençons par une description 



2 pts 2 pts 2 pts 2 pts 2 pts 2 pts

Corrigé-type + Barème. Réponse à l'exercice 01 : 1. La probabilité que ce serveur Il s'agit ici de la file d'attente M/M/2 avec ? = 9 clients/heure = 9.



SUJET + CORRIGE

16 déc. 2011 Épreuve : Examen ... Exercice 1 (Files à l'aide de Piles (8 points)) ... de la première pile correspond à l'avant de la file tandis que le ...



Recherche Opérationnelle:

Programmation dynamique chaînes de Markov



Exercices corrigés : File dattente - Complex systems and AI

Les exercices corrigés ci-dessous concernent les chaines de Markov en temps continu et plus particulièrement la notion de file d'attente



Examen corrige File dattente

corrige pdf - Irif Exercice 2 - File d'attente 7 Exercices non corrigés On se propose d'étudier une file d'attente simple ayant 2 serveurs



Theorie des files dattente - coursexercicesexamens - Univdocs

Telecharger des cours et examens corrigesexercices corrigestravaux dirigés pdf resumedes polycopie documents de module Theorie des files d'attente



[PDF] corrigepdf - Irif

Exercice 2 - File d'attente On considère une file d'attente M/M/3 1 Page 2 1 Expliquez brièvement le sens de cette notation



Exercices de Files dAttente - Correction Question 1

Nous avons bien un problème de file d'attente où le service est constitué des travaux réalisés sur le pont élévateur et où les clients sont les voitures





Files Corrigés PDF PDF Enseignement des mathématiques - Scribd

Exercices de Files dAttentes Monique Becker Andre-Luc Beylot 6 3 Agregation de files dattente Examen+corrigé+de+MEPSpoisson pdf Rym Khalifa



[PDF] Exercices de Files dAttentes

Quel est le temps moyen d'attente E[W]? Quelle est la proportion de clients servis par chacun des deux serveurs? 4 6 Performance d'un étage d'abonnés - File 



[PDF] Modélisation dune le dattente

Les files d'attente sont aujourd'hui des phénomènes que l'on rencontre quotidiennement dans de très nombreux domaines et sous diverses formes



Exercices de Files d Attentes - PDF Free Download - DocPlayerfr

Exercices de Files d Attentes Monique Becker André-Luc Beylot Alexandre Delye de chaînes de Markov Agrégation de files d attente Exercices non corrigés 

:
Exercices corrigés

Exercices corrigés

Dominique Pastor & Christophe Sintes

Version - 1 (Mai 2014)

Table des matières

1 Aléatoire et formalisme 3

2 Variables aléatoires et moments 17

3 Aléatoire multivarié 29

1

Introduction

Le lecteur trouvera ici les énoncés et corrigés des exercices proposés dans "Probabilités pour l"ingénieur, des fondements aux calculs" Certains des énoncés ci-dessous ont été modifiés par rapport à ceux de l"ouvrage Nous conseillons au lecteur de consulter ce livret d"énoncés et de corrigés régu- lièrement car nous proposerons de nouveaux exercices. Nous envisageons notam- ment quelques exercices ou problèmes où les calculs seront suivis de programma- tions Matlab permettant de vérifier la validité des résultats trouvés par le lecteur. Que les lecteurs intéressés n"hésitent pas à nous contacter pour nous faire part de leurs suggestions aux adresses électroniques :

Dominique.Pastor@telecom-bretagne.eu

et

Christophe.Sintes@telecom-bretagne.eu

Nous suggérons à nos éventuels correspondants de débuter le sujet de leur cour- riel par l"abbréviation PP I (p robabilitésp ourl "ingénieur),c eq uinous p ermettrade mieux identifier la nature de leur courriel. 1

Chapitre 1

Aléatoire et formalisme

EXERCICE1.1.-[Convergences monotone et dominée] nmériques positives ou nulles, sans préciser la fonction vers laquelle cette suite surables positives ou nulles, alors la limite de la suite (fn(x))n2Nexiste dansj0,1] pour toutx2R. Les notions de mesurabilité et d"intégrale s"étendent sans réelle dif- ficulté au cas des fonctions positives ou nulles à valeurs dans [0,1]. La conclusion du théorème de convergence monotone est alors inchangée :fAElimnfnest mesu- rable et : lim kZ R fkd¸AEZ R fd¸ Il faut utiliser cet énoncé plus général de la convergence monotone pour répondre aux questions suivantes. 1. S oit( gn)n2Nune suite d"applications numériques mesurables à valeurs dans [0,1[. Montrer queZ R1 X nAE1g n(x)dxAE1X nAE1Z R gn(x)dx. 2. S oit(fn)n2Nunesuited"applicationsnumériquesmesurables.Onsupposeque 1X nAE1Z R jfn(x)jdxÇ1. On poseÁ(x)AE1X nAE1jfn(x)j2[0,1] pour toutx2R. (a)

M ontrerq ue

Z R

Á(x)dxÇ1.

(b) E na dmettantque toute ap plicationint égrableest finie p resquep artout, déduire de la question précédente que 1X nAE1f n(x) converge pour presque tout réelxet queR

Rjf(x)jdxÇ 1avecf(x)AE1X

nAE1f n(x) en tout pointx 3

4PROBABILITÉS POUR L"INGÉNIEUR

où cette série converge etf(x)AE0 (par exemple) enxoù la sériePfn diverge. (c)

M ontrerqu eZ

R f(x)dxAE1X nAE1Z R fn(x)dx. Ce résultat est [RUD 87, Theo- rem 1.38, p. 29] dans le cas réel.

Solution

que somme finie d"applications mesurables. De plus, pour toutN2N,GNÊ0. Nous NR

RGN(x)dxAER

RlimNGN(x)dx. D"où le résultat, car :

Z R

GN(x)dxAENX

nAE1Z R gn(x)dx et lim NZ R

GN(x)dxAE1X

nAE1Z R gn(x)dx

2a) Par application de la question précédente, nous avons :

Z R

Á(x)dxAE1X

nAE1Z R jf(x)jdxÇ1

2b) Comme

R RÁ(x)dxÇ1,Áest finie presque partout. Il s"ensuit que pour presque toutx, la sériePfn(x) est absolument convergente et donc convergente. En tout pointxoù cette série est absolument convergente,jf(x)j ÉÁ(x) et pour tout réel xoù la sériePfn(x) diverge,f(x)AE0. CommeÁest intégrable,fest elle-aussi in- tégrable. Il suffit même de dire quefest majorée presque partout par la fonction intégrableÁ- sans même avoir à préciser une quelconque valeur pourflà où elle n"est pas majorée parÁ- pour garantir quefest intégrable.

3) Nous avonsjPNnAE1fnj ÉÁet limnPNnAE1fnAEf(presque partout). Nous sommes

donc dans les conditions de la convergence dominée dans un cas plus général que que partout au lieu d"une convergence partout. Mais cela ne change en rien les que partout dans les énoncés de la convergence montone et dominée sans que cela de la convergence dominée. Le lecteur attentif le remarquera peut-être : nous n"avons en fait pas besoin de

la question précédente pour garantir l"intégrabilité defcar cette intégrabilité est

directement garantie par la convergence dominée! Les 3 exercices suivants sont des adaptations d"énoncés que le lecteur trouvera dans [KHA 94].

EXERCICES PARTIE I5

EXERCICE1.2.-[Application de la convergence dominée] SoientaÈ1, un borélienAinclus dans [0,1[ et une application numériquefinté- grable surA:Z A jf(x)jdxÇ1. Montrer que limnZ

Anxf(x)1ÅnaxadxAE0.

Indication :justifier et utiliser le fait que, pour toutx2[0,1[,x·xaÅ1.

Solution

Six2[0,1], on axÉ1É1ÅxacarxaÊ0. SixÈ1,xÇxaÇxaÅ1. Donc, pour tout x2[0,1[,x·xaÅ1. Nous déduisons de cette inégalité quenxn axaÅ1É1. Aussi, nous

avons l"inégalité :j1A(x)nxf(x)1Ånaxaj AE1A(x)nxjf(x)j1ÅnaxaÉ jf(x)jpuisqueA½[0,1[. Comme

fest intégrable, la suite de fonctions (fn)n2Navecfn(x)AE1A(x)nxf(x)1Ånaxaest dominée par la fonction intégrablef. De plus, pour toutx2R, limn1A(x)nxf(x)1ÅnaxaAE0. D"où le résultat par application de la convergence dominée. EXERCICE1.3.-[Application de la convergence dominée]

Soita2]0,1[,

1. M ontrerqu ee¡xxa¡1est intégrable sur [0,1[; 2.

M ontrerqu e1 ÅxÉexpour toutx2R;

3.

M ontrerqu epour t outx2[0,1[, limn¡1¡xn

nAEe¡x; 4.

E ndéduir equ eli m

nZ n 0³

1¡xn

nxa¡1dxAEZ 1 0 e¡xxa¡1dx.

Solution

1) Soitf(x)AEe¡xxa¡1définie pour toutx2]0,1[. Commef(x)Ê0 pour toutx2

]0,1[, la valeur de l"intégraleR1

0f(x)dxexiste dans [0,1]. On cherche à montrer

que cette intégrale est en fait finie.

Commee¡xÉxa¡1, nous avons :

f(x)1]0,1](x)Éxa¡11]0,1](x) PourxÊ1, on axa¡1É1. Nous avons donc aussi : f(x)1[1,1](x)Ée¡x1[1,1](x)

Il s"ensuit que :

Z 1 0 f(x)dx)AEZ 1 0 f(x)dxÅZ 1 1 f(x)dxÉZ 1 0 xa¡1dxÅZ 1 1 e¡xdx(1.1) Le second terme du membre de droite dans l"inégalité précédente est évidemment fini en raison des propriétés de l"exponentielle. On peut même préciser la valeur de

6PROBABILITÉS POUR L"INGÉNIEUR

ce terme puisqu"une primitive dee¡xest¡e¡x. On a doncR1

1e¡xdxAE[¡e¡x]11AE1.

La première intégrale du membre de droite dans l"inégalité (1.1) est elle-aussi fi- nie. Pour le montrer, on peut utiliser la proposition 4.15 du livre. À titre d"exemple, nous allons faire ici une démonstration spécifique au cas considéré dans cet exer- cice, sans passer par cette proposition, afin que le lecteur s"exerce à l"emploi de applicationsgn(x)AExa¡11[1/n,1](x) pourx2]0,1]. Pour toutx2]0,1], cette suite est croissante et limngn(x)AExa¡11]0,1](x). Par application de la convergence monotone, Z 1 0 xa¡1dxAElimnZ 1

1/nxa¡1dx(1.2)

L"application qui associexa¡1à toutx2[1/n,1] est continue et bornée sur [1/n,1]. Elle est donc intégrable sur [1/n,1]. D"autre part, une primitive dexa¡1est (1/a)xa.

Nous obtenons donc :

Z 1

1/nxa¡1dxAE·1a

xa¸1

1/nAE1a

1¡1n

En reportant ce résultat dans (1.2) , nous obtenons : Z 1 0 xa¡1dxAElimn1a

1¡1n

AE1a (1.3)

On a donc :

Z1 0 f(x)dxÉ1a

Å1 (1.4)

ce qui garantit l"intégrabilité def. Avec un peu d"habitude, on peut aller beaucoup plus vite en passant vite sur les détails que nous venons de donner. Mais nous avons voulu donner ces détails pour montrer comment les différents résultats de la théorie s"articulent pour établir l"intégrabilité de la fonction considérée.

2) Il y a plusieurs façons de procéder. La plus simple est de faire un dessin. Si l"on

veut absolument faire des calculs, une solution classique consiste à considérer la fonctionh(x)AEex¡x¡1 définie pour tout réelxet à étudier le sens de variation de h. On ah0(x)AEex¡1Ê0 pourxÊ0. On en déduit quehest croissante sur [0,1[. cela implique queh(x)Êh(0) pour toutxÊ0 et commeh(0)AE0, nous obtenons le résultat voulu.

3) Nous avons³

1¡xn

nAEenln¡1¡xn . Pournassez grand, nous pouvons écrire : ln

1¡xn

AE¡xn

Åxn

"³xn avec lim t!0"(t)AE0. On a donc :³

1¡xn

nAEe¡xÅx"(x/n), d"où le résultat.

EXERCICES PARTIE I7

f n(x)AE³

1¡xn

nxa¡11]0,n](x)

Par la question 2, 1¡xn

Ée¡x/npourxÊ0. Donc, pourxÉn,¡1¡xn nÉe¡x. On a simplement versh. Nous sommes dans les conditions d"applications du théorème de la convergence dominée. D"où le résultat. EXERCICE1.4.-[Une autre application de la convergence dominée] 1.

P ourquoil"intégralecnAER

on écrire que :cnAE2R1

0gn(x)dx?

2. a) Montrer que pour tout réelx:¡1Åx2/n¢(nÅ1)/2Ê1Åx2/2. b) Montrer que l"applicationx2R7¡!11Åx2/2est intégrable. 3. O nv eutcalcul erla li mitede cnlorsquentend vers l"infini.quotesdbs_dbs28.pdfusesText_34
[PDF] file d'attente m/m/1 exercice corrigé

[PDF] file d'attente m/m/c

[PDF] chaine de markov pour les nuls

[PDF] chaine de markov résumé

[PDF] chaine de markov matrice de transition

[PDF] chaine d'acquisition de données

[PDF] chaine de mesure audioprothèse

[PDF] acquisition de données du capteur ? l ordinateur

[PDF] chaine de mesure pdf

[PDF] chaine d'acquisition capteur

[PDF] les capteurs exercices corrigés

[PDF] chaine de markov apériodique

[PDF] chaine de markov apériodique exemple

[PDF] chaine de markov reversible

[PDF] chaine de markov récurrente