[PDF] Corrigé de lexamen du 26 avril 2012 (durée 2h)





Previous PDF Next PDF



Corrigé de lexamen du 26 avril 2012 (durée 2h)

26 avr. 2012 Les trois parties sont indépendantes. Exercice 1 : On considère une chaîne de Markov (Xn)n?0 sur {1...



Processus aléatoires et applications

2 jan. 2010 A Solution de quelques exercices. 109. A.1 Exercices du Chapitre 1 . ... de taille N. Une cha?ne de Markov sur X de matrice de transition P ...



Les chaînes de Markov Exercices solutionnés

16 oct. 2000 H partir des trois graphes de transition suiv# ants reconstituez les chaJnes de Markov qui leur sont associées (espace dVétats et matrice de ...



Exercices sur les chaînes de Markov

Exercices sur les chaînes de Markov Exercice 2. Soit (Xn)n?0 une chaîne de Markov sur {1 2



Mary - TD 11 – Chaînes de Markov (récurrence/transience) (corrigé)

Exercice 2. Chaines de Markov ? Soit (Xn)n?N une chaîne de Markov associée à une matrice de transition P 



TD 9 : Chaînes de Markov Corrigé

H = (S2n)n?0. Solution de l'exercice 1. 1. Oui. La matrice de transition est Q(x y) = 1.



Feuille dexercices n 2 : Chaînes de Markov : exemples et propriétés.

Montrer que (Yt)0 t n est encore une chaîne de Markov de matrice de transition Q et de mesure initiale à préciser. Correction. Cet exercice montre que la 



CHAÎNES DE MARKOV

5.3.4 Graphe associé à une chaîne de Markov homogène . . . . . . . . . . . . . 82. 5.4 Exercices : Introduction aux chaînes de Markov .



TP9/10 : Chaînes de Markov - Arnaud Jobin

faire de l'exercice avec probabilité 0.3. 2) Si à l'heure n



Devoir Maison no 1 – Corrigé

Devoir Maison no 1 – Corrigé. Exercice 1. On considère la chaîne de Markov (Xn)n?0 sur Z définie par X0 = 0 et par les probabilités conditionnelles.



[PDF] CHAÎNES DE MARKOV - ceremade

5 3 4 Graphe associé à une chaîne de Markov homogène 82 5 4 Exercices : Introduction aux chaînes de Markov



[PDF] Processus-M1-2012-Examenpdf

26 avr 2012 · Corrigé de l'examen du 26 avril 2012 (durée 2h) Exercice 1 : On considère une chaîne de Markov (Xn)n?0 sur {1 7} de matrice de 



[PDF] Exercices sur les chaînes de Markov

Exercice 1 On dispose de deux pièces une non pipée et une qui est truquée et est “Face” des deux côtés On commence par en choisir une des deux au hasard 



[PDF] TD 11 – Chaînes de Markov (récurrence/transience) (corrigé) - CNRS

Tien-Nam Le Alice Pellet--Mary TD 11 – Chaînes de Markov (récurrence/transience) (corrigé) Exercice 1 Récurrence et Transience Sur l'ensemble S = {0 



[PDF] TD 10 – Chaînes de Markov (corrigé) - CNRS

TD 10 – Chaînes de Markov (corrigé) Exercice 1 Las Vegas Let A be a Las-Vegas randomized algorithm for a decision problem with an expected running time



[PDF] TD 9 : Chaînes de Markov Corrigé - mathenspsleu

Exercice 1 (Vrai ou faux) Soit (Sn) une marche aléatoire simple sur Z Lesquels des processus suivants sont des chaînes de Markov sur Z ? Pour ceux qui le sont 



[PDF] Les chaînes de Markov Exercices solutionnés

16 oct 2000 · Les chaînes de Markov Exercices solutionnés Geneviève Gauthier dernière mise à jour : 16 octobre 2000 Probl?me 1 (30 points)



[PDF] Corrigé des exercices 1

Corrigé des exercices 1 Chaînes de Markov 2022-2023 1 Chaîne de Markov à deux états (a) Pour avoir une matrice stochastique il faut a b c d ? 0 



[PDF] Chaines de Markov : compléments

Une cha?ne de Markov est dite irréductible lorsque tous ses états Exercice 1 : L'observation du développement d'un organisme (animal ou plante) au cours 



[PDF] CORRIGÉ

CORRIGÉ Date : 30 septembre-4 octobre 2013 PRÉNOM : Groupe : Exercice 1 Donner la matrice de transition P de la cha?ne de Markov d'ensemble 

:
Université Paul Sabatier (Toulouse 3) Magistère Économiste Statisticien

M1 - Processus Année 2011-2012

Corrigé de l"examen du 26 avril 2012(durée 2h) Tous documents interdits. Soyez concis, mais justifiez scrupuleusement ce que vous faites.

Les trois parties sont indépendantes.

Exercice 1 :On considère une chaîne de Markov(Xn)n0surf1;:::;7gde matrice de transitionQ donnée par Q=0 B

BBBBBBB@1=2 1=4 0 1=4 0 0 0

1=2 0 0 0 0 0 1=2

0 0 1=8 0 7=8 0 0

1=4 0 0 0 0 0 3=4

0 1=9 7=9 0 0 1=9 0

0 0 0 0 0 1 0

0 0 0 1 0 0 01

C

CCCCCCCA

a)

Dessiner le graphe de la c haînede Mark ovasso ciéeen précisan tle sprobabilit ésde transitions

entre les différents états. b) Détermi nerles classes d"états récurren tset transitoires. c)

La c haîneest-elle irréductible ?

d)

Calcu lerP3(X2= 6)etP1(X2= 7).

Solution de l"exercice1.

a) Graphe :1253

4761/4

1/21/97/9

1=41=21=43=41/9

17/81/21/8

1

b) On déduit du graphe qu"il y a deux classes récurrentes :f1;2;4;7getf6g, et une classe transiente :

f3;5g. c) Non, sinon elle n"admettrait qu"une seule classe. d) Par la formulePx(X2=y) =Q2(x;y) =P zQ(x;z)Q(z;y), on obtient P

3(X2= 6) =Q(3;5)Q(5;6) =78

19 =772 ;et P

1(X2= 7) =Q(1;2)Q(2;7) +Q(1;4)Q(4;7) =14

12 +14 34
=516 1 Exercice 2 :On définit une suite de variables aléatoires(Sn)n0par S

0=x >0p.s.;et pourn1,Sn=Sn1+"nSn1;

où("n)n1est une suite de v.a. indépendantes et identiquement distribuées de loi12 1+12

1, et où

est un réel tel quejj<1. Soit(Fn)n0la filtration naturelle de(Sn)n0,i.e.Fn=(S0;:::;Sn), pour toutn0. a)

Mon trerque (Sn)n0est une(Fn)n0-martingale.

b) Mon trer(par récurrenc e)que p ourtout n0,Sn>0. c) En déduire qu e(Sn)n0converge p.s., quandntend vers+1. d) On p ose,p ourtout n0,Zn= logSn:Montrer queZn=Zn1+ log(1 +"n). e)

En déduire qu e

Z n= logx+nX k=1log(1 +"k): f)

Calc ulerE(log(1 +"1)), et montrer que

Z nn p.s.!n!112 log(12): g)

En déduire a lorsque Snconverge p.s. quandntend vers l"infini, vers une limite à déterminer.

Solution de l"exercice2.

a)(Sn)est clairement adapté par définition de(Fn). Montrons queSnintégrable pour toutn0. S

0est intégrable car constante. Supposons par récurrence queSn1est intégrable. Alors comme

jj<1etj"nj 1p.s., on ajSnj 2jSn1j, et doncSnest intégrable. Pour toutn0, on a

E(Sn+1jFn) =E(Sn+"n+1SnjFn)

=Sn+SnE("n+1jFn)carSnestFn-mesurable =Sn+SnE("n+1); car"n+1est indépendante deFnpar construction. Comme"n+1est centrée,i.e.E("n+1) = 0, on obtientE(Sn+1jFn) =Sn, et donc(Sn)nest une martingale. b) On a S1=S0(1+"1) =x(1+"1). Or1< <1et"1=1p.s., donc1+"1>0, et comme x >0,S1est positive. Par récurrence, on suppose alorsSn>0. Et commeSn+1=Sn(1+"n+1), par la même preuve que pourS1,Snest positive. c) Comme (Sn)nest une martingale positive, elle converge p.s., car elle est bornée dansL1,i.e. sup nEjSnj<1. d)Zn= logSn= log(Sn1(1 +"n)) = logSn1+ log(1 +"n) =Zn1+ log(1 +"n). e)

P arrécu rrenceimmédiate ,on obtien tdonc

Z n= logx+nX k=1log(1 +"k): f) Comme 1 +"1>0p.s.,log(1 +"1)est bien définie p.s. et intégrable. On a alors

E(log(1 +"1)) =12

log(1 +) +12 log(1) =12 log(12): Par la loi des grands nombres, appliquée aux v.a. i.i.d. intégrableslog(1 +"i), on a 1n n X k=0log(1 +"k)!E(log(1 +"1));p.s. et comme logxn !0, on obtient bien le résultat demandé. 2 g)Comme jj<1, on a0< 2<1et0<12<1, doncZnconverge p.s. vers1etSn converge p.s. vers 0. Exercice 3 :Soient(Xn)n0,(Yn)n0,(Zn)n0des suites de variables aléatoires indépendantes et identiquement distribuées, toutes les trois indépendantes entre elles, et de même loi 12 1+12 1. On posen= (Xn;Yn;Zn), etSn=Pn k=1k, avecS0= (0;0;0)p.s. a)

Mon trerque (Sn)n0est une chaîne de Markov.

b)

Que v autP(Pn

k=1Xk= 0)pournimpair? c)

Mon trerque P(P2n

k=1Xk= 0) =Cn2n(12 )2n. d)

En déduire q ueP(S2n= (0;0;0)) = (Cn2n(12

)2n)3. e) Donner un équiv alentquan dn! 1deP(S2n= (0;0;0)).On rappelle la formule de Stirling : n!+1nnenp2n. f)

Mon trerque (0;0;0)est transitoire.

Solution de l"exercice3.

a) Soients0;:::;sn+12Z3tels queP(S0=s0;:::;Sn=sn)>0. Alors, commeSn+1=Sn+n+1, on a P(Sn+1=sn+1jS0=s0;:::;Sn=sn) =P(Sn+n+1=sn+1jS0=s0;:::;Sn=sn) =P(sn+n+1=sn+1jS0=s0;:::;Sn=sn) =P(sn+n+1=sn+1); par indépendance den+1et deS0;:::;Sn. On obtient de même que

P(Sn+1=sn+1jSn=sn) =P(sn+n+1=sn+1);

et donc(Sn)nest une chaîne de Markov. b) CommeXnest à valeurs dansf1;+1gp.s., on ne peut revenir en 0 qu"en un nombre pair de pas, et doncP(Pn k=1Xk= 0) = 0pournimpair. c) Pour queP2n k=1Xk= 0il faut quenvariables soient égales à+1etnvariables soient égales à1. Il y a pour celaCn2npossibilités et comme les v.a.Xnsont i.i.d. on obtientP(P2n k=1Xk= 0) =Cn2n(12 )2n. d) CommefS2n= (0;0;0)g=fP2n k=1Xk= 0;P2n k=1Yk= 0;P2n k=1Zk= 0g, par indépendance desXi, Y i,Zion obtient

P(S2n= (0;0;0)) =P

2nX k=1X k= 0 P 2nX k=1Y k= 0 P 2nX k=1Z k= 0 ce qui donne le résultat par la question précédente. e) Par la formule de Stirling, on a quandn! 1, C n2n12 2n (2n)2ne2np4nn

2ne2n2n

12 2n 1pn et en passant à la puissance 3, on obtient

P(S2n= (0;0;0))1(n)3=2:

f) L"espérance du nombre de retour en(0;0;0)N0est

E(N0) =EX

n0? fS2n=0g =X n0P(S2n= (0;0;0)) et commeP(S2n= (0;0;0))1(n)3=2qui est sommable, on aE(N0)<1. Le nombre de retour en (0;0;0)est donc fini p.s., c"est-à-dire que(0;0;0)est transitoire. 3quotesdbs_dbs22.pdfusesText_28
[PDF] chaine énergétique barrage hydraulique

[PDF] chaine énergétique d'une éolienne

[PDF] exercice corrigé centrale hydraulique

[PDF] chaine énergétique centrale thermique

[PDF] chaine énergétique pile

[PDF] chaine énergétique exercices

[PDF] chaine énergétique éolienne

[PDF] chaine énergétique panneau solaire

[PDF] chaine energetique definition

[PDF] chaine énergétique exemple

[PDF] cours de logistique de distribution pdf

[PDF] introduction logistique

[PDF] cours management de la chaine logistique pdf

[PDF] logistique et supply chain management

[PDF] supply chain management livre pdf