[PDF] Interférences de Young La méthode utilisée





Previous PDF Next PDF



RECOMMENDATION ITU-R S.1655 - Interference mitigation

In the second case satellite diversity is used as an interference mitigation technique to reduce the interference levels at the satellite and user terminal 



Chapitre 18 Diffraction des ondes et interférences

© Nathan 2020.Sirius Physique-Chimie



Physique terminale S

9 нояб. 2018 г. Les ondes arrivant en phase au point M ajoutent leurs effets; la frange est une frange brillante. • Si δ = (k +. 1. 2) λ on a une interférence ...



SatGuard - Real-Time VSAT Interference Monitoring

A significant source of RF interference and downtime is due to VSAT No interaction with the VSAT hub is required to determine the interfering terminal IDs.



Interference of Cooper quartet Andreev bound states in a multi

With the odd parity of Cooper pairs transferred the periodicity is one flux quantum. In addition to the two-terminal Josephson currents (i)-(iii)



General Technical Information Radio Interference Suppression

Above 30MHz strength of radiated field or radiated power on the terminal in the supply network is measured. Permitted levels of interference are given in the 



S.1323-1 - Maximum permissible levels of interference in a satellite

d) n is to be determined. Figure 18 is a sample calculation of the uplink interference from a GSO 13 terminal located 5° S of the non-GSO earth station. The 



L band Compatibility Criteria and Interference Scenarios Study

24 авг. 2009 г. signal to interference (S/I) ratio of 12 dB. 3.2.2. Signal-to ... Test set to the transponder antenna terminal and carry out the following two ...



In-Band Full-Duplex Wireless: Challenges and Opportunities

20 мая 2014 г. One is self-interference which occurs when the signal transmit- ted by an IBFD terminal interferes with the reception of the desired incoming ...



RECOMMENDATION ITU-R S.1323-1 - Maximum permissible levels

d) n is to be determined. Figure 18 is a sample calculation of the uplink interference from a. GSO 13 terminal located 5° S of the non-GSO earth station. The 



Physique terminale S

9 nov. 2018 Table des matières. 1 La diffraction des ondes. 2. 2 Les interférences. 3. 3 Effet Doppler. 4. PAUL MILAN. 1. PHYSIQUE-CHIMIE. TERMINALE S ...





Interférence des ondes lumineuses

Le faisceau lumineux s'élargissait ensuite par phénomène de diffraction et éclairait ainsi deux petits trous S1 et S2 sur l'écran B. Une nouvelle diffraction se 



Propriétés des ondes : diffraction interférences et effet Doppler 1

SMARTCOURS » Terminale » Physique Chimie » Physique » Cours » Propriétés des ondes : diffraction interférences et effet Doppler.



Physique Chapitre 3 Terminale S

principe. 3) Interférence constructives et destructives. Les deux ondes qui interfèrent sont émises simultanément par chacune des sources S1 et.



Exercices de la partie H Interférences

Terminale STL – SPCL Ondes. Fiche d'exercices – partie H : interférences Identifier dans chaque cas s'il est possible d'observer un phénomène ...



cours-1-interference.pdf

On s'intéresse au devenir de rayons lumineux issus ou passant par un même point A et traversant le système optique ?. Si les droites supportant les rayons 



Leffet Doppler et ses applications dans les différents domaines de

[4] Valérie Prévost et Bernard Richoux Physique Chimie Terminale S



Interférences de Young

La méthode utilisée dans cette expérience pour diviser l'onde issue de la source S est appelée division du front d'onde car les deux ondes résultantes sont 



Cours doptique ondulatoire – femto-physique.fr

décrire très correctement les phénomènes d'interférence et de diffraction. de sorte qu'il s'agit bien d'une solution de l'équation d'onde à.

Frédéric LegrandLicence Creati veCommons 1

Interférences de Young

1. Expérience des trous d"Young

1.a. Description

Thomas Young (physicien britannique 1773-1829) a découvert et étudié les interférences des ondes lumineuses en faisant une expérience avec deux fentes parallèles en 1802. On considère tout d"abord une version simplifiée avec deux trous, plus simple à expliquer théoriquement.z DsDT 1 T 2 ys xs xy xy

SUne source de lumière quasi monochromatique (par exemple une lampe à décharge) est placée

derrière un écran percé d"un trou. Si le trou est assez petit, on obtient ainsi une source prati-

quement ponctuelleS. Un autre écran, percé de deux trous très petits et très proches (distance

de l"ordre du millimètre) est placé à une distanceDsde cette source. Le plan d"observation est

placé à une distanceDde ces deux trous. L"éclairement étant très faible, on utilise un instru-

ment de vision direct (par ex. un oculaire) pour observer les interférences. Les distancesDet D ssont de l"ordre de quelques dizaines de centimètres.

Frédéric LegrandLicence Creati veCommons 2

1.b. Division du front d"ondeS

S 1 S 2 /b

Champ d'interférencePour étudier l"effet de l"écran percé des deux trous, on considère que la sourceSest parfaite-

ment ponctuelle. L"onde sphérique émise par cette source rencontre l"écran opaque. Les deux

trous, de taille très petite, sont éclairés par cette onde. NotonsS1etS2les deux points où

se trouvent les trous. La lumière traverse les trous par diffraction. L"optique géométrique ne

peut donc pas expliquer le franchissement de l"écran. En revanche, elle reste valable de part et d"autre. À droite de l"écran, les deux trous se comportent comme deux sources ponctuelles cohérentes dont le déphasage est : (S1)(S2) =2 (SS1SS2)(1) Dans un premier temps, on suppose queSS1=SS2(bien que cette condition soit impossible à réaliser exactement). Les deux sources sont alors synchrones.

En réalité, les deux sources émettent à droite de l"écran de manière directionnelle, principa-

lement dans un cône de diffraction. Sibest le diamètre des trous, ce cône a un demi-angle égal

à environ=b. Par exemple, poura= 0;1mm, cet angle est d"environ0;005radsoit0;3deg.

Cet angle est très petit mais, les deux trous étant très proches, les deux cônes se coupent à

quelques centimètres de l"écran. La zone de recoupement des deux faisceaux est lechamp d"interférence. La méthode utilisée dans cette expérience pour diviser l"onde issue de la sourceSest appeléedivision du front d"onde, car les deux ondes résultantes sont issues de deux points différents du front d"onde. L"animation ci-dessous montre la division d"une onde bidimensionnelle, représentée sous forme d"une surface. Dans la partie droite, on voit la superposition des deux ondes issues des deux sources ponctuelles secondaires.

1.c. Franges d"interférence

Les interférences observées sur le plan situé à une distanceDde l"écran sont celles pro-

duites par deux sources ponctuelles cohérentes et synchrones. La distanceDest très grande

Frédéric LegrandLicence Creati veCommons 3

par rapport à la distance entre les sources (notéea). On voit donc des franges rectilignes per-

pendiculaires à la droiteS1S2. La différence de marche en un pointM(x;y)du plan est : =nxaD (2)

oùnest l"indice de l"air, dont la valeur est très proche de 1. Les deux trous sont éclairés avec

la même intensité, donc on peut appliquer la formule de Fresnel avecI1=I2:

I(x) = 2I1

1 + cos2

axD (3) pas de manière isotrope dans l"espace mais seulement dans un cône de diffraction. La formule de Fresnel représente approximativement le profil d"intensité dans la tache principale de dif- fraction.

L"interfrange est :

i=Da (4) .Exercice : Calculer l"interfrange poura= 1;0mm,D= 1met= 500nm. La largeur du champ d"interférence est environ :

L= 2Db

(5)

Le nombre de franges visibles est donc environ

Li =2ab . Par exemple, poura= 1mmet b= 0;2mm, il y a environ 10 franges visibles. En conséquence, la différence de marche ne dépasse pas quelques longueurs d"onde. Pour une lumière quasi monochromatique, elle est

donc largement inférieure à la longueur de cohérence, qui est supérieure au millimètre.

Lorsqu"on déplace le plan d"observation longitudinalement (dans la direction Z), les in-

terférences sont toujours aussi bien contrastées, bien que leur luminosité diminue avec la dis-

tance. La figure d"interférence observée à une distanceD0est la même que celle observée à

une distanceD, agrandie d"un facteurD0=D. est aisée car elle ne nécessite pas de mise au point sur un plan précis. La frange d"interférence constructive d"ordre0se trouve enx= 0, à égale distance des deux trous. Cela vient du fait que les deux trous sont à égale distance de la source.

Lasimulation

Diffractionparuneouplusieursouvertures

permetdevoirlafigurecomplète, pour des trous circulaires ou des trous carrés. La simulation

Expérience des trous d"Y oung

montre le profil d"intensité pour des trous circulaires.

1.d. Déplacement de la source

On considère un petit déplacement de la source sur l"axexS. Frédéric LegrandLicence Creati veCommons 4 x x s S S 1 S 2

M(x,y)

D sD OLa différence de marche en un pointMs"écrit à présent : =nSS1+nS1Mn(SS2+S2M) =n(SS1SS2) +n(S1MS2M)(6)

Le premier terme se calcule comme le second, car le déplacement de la source est très petit par

rapport à la distanceDs. On a donc : =nxsaD s+nxaD (7) Les franges sont toujours rectilignes et l"interfrange est inchangé mais la position des franges est changée. En particulier, la frange d"ordre 0 se trouve à présent en : x(0) =DD sx s(8) Il y a donc une translation des franges dans le sens opposé à celle de la source. Le champ

d"interférence se déplace exactement de la même façon, si bien que la figure d"interférence ne

change pas du tout. Voilà pourquoi la position précise de la source par rapport aux trous n"a pas d"importance. Expérimentalement, il est d"ailleurs impossible de savoir si la source est à

égale distance des deux trous.

Si la source est déplacée sur l"axeysd"une distance très petite par rapport àDs, la diffé-

rence de marche ne change pas. Pour ce déplacement de la source, la tache de diffraction se

décale dans la direction opposée au déplacement mais les franges d"interférence restent aux

mêmes emplacements.

2. Expérience des fentes d"Young

2.a. Utilisation de fentes

Dans l"expérience desfentes d"Young, deux fentes parallèles sont utilisées à la place des

trous. On noteala distance entre les centres des fentes etbleur largeur. Frédéric LegrandLicence Creati veCommons 5 x y a S 1S 2 F 1 F

2Le calcul de l"intensité sur le plan d"observation fait appel à la théorie de la diffraction, qui sort

obtenue avec deux sources ponctuelles cohérentesS1etS2placées aux centres des fentes. Les

franges interférence sont identiques à celle obtenues avec deux trous. La seule différence est

la forme du champ d"interférence, car la diffraction se fait principalement dans la direction perpendiculaire aux fentes. Dans la direction parallèle aux fentes (direction y), la diffraction

est très faible. Dans la direction perpendiculaire à la fente (direction x), la demi-largeur de la

tache de diffraction est b D.

La simulation

Dif fractionpar une ou plusieurs ouv ertures

permet de v oirla figure de dif-

fraction complète pour différentes ouvertures éclairées par une source ponctuelle monochro-

matique.

L"interfrange est toujours :

i=Da (9) La dernière modification consiste à remplacer la source ponctuelleSpar une fente sourceF.

Pour cela, il suffit de placer un écran opaque percé d"une fente juste devant la lampe. Comparé

au trou, la fente permet d"avoir beaucoup plus de lumière et il est facile de réaliser une fente

dont la largeur est réglable. Pour que les interférences soient visibles, il faut que la fente source

Frédéric LegrandLicence Creati veCommons 6

Fsoit parallèle aux deux fentesF1etF2. En pratique, ce parallélisme est obtenu en faisant tourner la fenteFpour maximiser le contraste des franges. Soient deux pointsSaetSbde cette fente source. Chacun de ces points produit sur le plan d"observation deux éclairementsIa(x)etIb(x)identiques.

Ces deux points de la fente source sont incohérents, car la lampe qui éclaire la fente n"a pas de

cohérence spatiale (lampe à décharge). En conséquence, l"intensité sur le plan d"observation

est la somme des deux intensités, sans terme d"interférence : I a;b(x) =Ia(x) +Ib(x) = 2Ia(x)(10) En en déduit qu"une fente source ainsi disposée produit les mêmes franges interférence qu"un point source, mais plus lumineuses. De plus, le champ d"interférence s"étend dans la directionyd"autant plus que la fente est longue. Dans la directionx, la largeur du champ d"interférence est toujours déterminée par la diffraction des deux fentesF1etF2.

Voici le dispositif final :

quotesdbs_dbs1.pdfusesText_1
[PDF] interférences définition

[PDF] interférences lumineuses exercices corrigés

[PDF] interferencia

[PDF] interférométrie radar

[PDF] interieur peugeot 2008 allure

[PDF] intermediate english lessons pdf

[PDF] internat des hopitaux de dakar

[PDF] internat medecine etranger

[PDF] international energy outlook 2016

[PDF] international energy outlook 2017

[PDF] international human resources and compensation & benefits management

[PDF] internationalisation des échanges et mondialisation cours

[PDF] interne résident titulaire médecine

[PDF] internet 1989

[PDF] internet definition pdf