[PDF] ´Eléments de calculs pour létude des fonctions de plusieurs





Previous PDF Next PDF



Calcul intégral

x dx = F(3) ? F(2) = 9. 2. ?. 4. 2. = 5. 2 . II Interprétation graphique : calcul d'aire. II.1 Aire d'un fonction positive. Propriété 



Calcul intégral

est un réel positif. 2) Interprétation graphique. Définition : on appelle unité d'aire du repère orthogonal (



Intégrales doubles et triples - M—

variables dans l'intégrale double. 2-Intégrales triples. 1.2- Interprétation graphique. • Sf surface représentative de f dans un repère orthonormé.



Espérance

L'interprétation graphique en terme d'aires donnée par la figure 7.2 nous permet d'écrire EX comme l'intégrale de Riemann ordinaire : EX .



Calcul intégral

Calcul intégral. Table des matières. I Intégrale d'une fonction. 2. II Interprétation graphique : calcul d'aire. 2. II.1 Aire d'un fonction positive .



Intégrales de fonctions de plusieurs variables

Si f est une fonction d'une variable l'intégrale de f sur un intervalle [a



TES. calcul integral

Calcul intégral. TES. I. Notion d'intégrale. Interprétation graphique. Le plan étant muni du repère orthogonal ( O I



Que retiennent les étudiants de lintégrale de Riemann après son

30 oct. 2020 abandonnent la construction de l'intégrale au profit du calcul de primitive ... l'interprétation graphique de l'expression algébrique d'une ...



´Eléments de calculs pour létude des fonctions de plusieurs

l'interprétation graphique de l'approximation affine d'une fonction d'une Donc un vecteur directeur de la tangente `a la courbe intégrale en ce point.



Terminale ES - Notion dintégrale Propriétés

I) Intégrale et valeur moyenne : 1) Unité d'aire : 2) Intégrale d'une fonction positive et continue sur un ... 2) Interprétation graphique :.



[PDF] Calcul intégral - Nathalie Daval

Interprétation graphique : La droite d'équation y = µf est la droite horizontale telle l'aire des partie de plan délimitées par l'axe des



[PDF] TES calcul integral

Calcul intégral TES I Notion d'intégrale Interprétation graphique Le plan étant muni du repère orthogonal ( O I J ) l'unité d'aire ( u a )



[PDF] Calcul intégral

II) Intégrale d'une fonction positive et interprétation graphique 1) Intégrale d'une fonction positive Propriété : Soit f une fonction continue et 



[PDF] INTÉGRALES - XMaths - Free

II Intégrale et primitives Exercice 03 (voir réponses et correction) Soit f définie sur IR par : f(x) = x + 2 1°) Tracer la représentation graphique D 



[PDF] Intégrales de fonctions de plusieurs variables - Mathématiques

8 2 2 Interprétation des intégrales simples en termes d'aire Nous sommes maintenant en mesure d'énoncer des résultats qui interpr`etent l'intégrale d'une



[PDF] Chapitre 3 Intégrale double

Faire le calcul de l'intégrale double I = ? ?D f(x y)dxdy dans l'exemple 3 14 pour la fonction f définie par f(x y) = x ? y Correction: On a I1 = ? ?D1f 



[PDF] Chapitre 3 Intégrales sur les courbes et les surfaces dans R n = 23

3 1 Intégrale d'un champ scalaire 3 1 1 sur une courbe Soit f(x y z) une fonction positive sur la trajectoire d'une courbe C paramétrisée par r(t)



[PDF] Lintégrale est égale à laire sous la courbe

Interprétation géométrique d'une intégrale L'intégrale est égale à l'aire sous la courbe On travaille sur un intervalle I = [a ; b] a < b f est une 

  • Comment interpréter graphiquement une intégrale ?

    f(x) dx ? M(b ? a). f(x) dx. Interprétation graphique : La droite d'équation y = ? est la droite horizontale telle l'aire des partie de plan délimitées par l'axe des abscisses, les droites d'équation x = a et x = b d'une part et les courbes d'équation y = f(x) et y = mf soient de même valeur.
  • Comment bien comprendre les intégrales ?

    En effet, l'intégrale d'une fonction positive f entre un nombre a et un nombre b est l'aire de la partie du plan délimitée horizontalement par les droites verticales d'équations x=a et x=b et verticalement par l'axe des abscisses et la courbe de f.
  • Comment faire une double intégration ?

    Faire le calcul de l'intégrale double I = ? ?D f(x, y)dxdy dans l'exemple 3.14 pour la fonction f définie par f(x, y) = x ? y.
  • Le domaine plan situé sous la courbe Cf est la partie plane délimitée par Cf, l'axe (O, I) et les droites d'équations x = a et x = b. On le note ici Pf. Autrement dit, on a: Pf = {M(x; y), a x b et 0 y f(x) }. On admet que Pf a une aire appelée intégrale de f sur [a ; b].

INSTITUT UNIVERSITAIRE DE TECHNOLOGIE

IUT "A" Paul Sabatier, Toulouse 3.

DUT G´enie Civil

Module de Math´ematiques.

MATH

´EMATIQUES

´El´ements de calculs pour l"´etude

des fonctions de plusieurs variables et des ´equations diff´erentielles.

G. Ch`eze

guillaume.cheze@iut-tlse3.fr http ://www.math.univ-toulouse.fr/≂cheze/Enseignements.html 2

R`egle du jeu

Ceci est un support de cours pour le module Mat2 de l"IUT G´enie Civil de Toulouse. Dans ce module il est question de fonctions de plusieurs variables et d"´equations diff´erentielles. Certains passages de ce cours comportent des trous, ils sont l`a volontairement. C"est `a vous de les compl´eter durant l"heure de cours hebdomadaire. La partie

du cours trait´ee en amphith´eˆatre sera compl´et´ee et disponible r´eguli`erement sur

internet `a l"adresse :http ://www.math.univ-toulouse.fr/≂cheze/. Les exercices `a faire en TD se trouvent `a la suite du cours et les corrections `a la fin de chaque chapitre. Je serai reconnaissant `a toute personne me signalant une ou deserreurs se trouvant dans ce document.

A pr´esent, au travail et bon courage `a tous!

i iiR`egle du jeu

Table des mati`eres

R`egle du jeui

I Fonctions de plusieurs variables1

1 Fonctions de plusieurs variables5

1.1 D´efinition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Repr´esentation graphique d"une fonction de deux variables. . . . . . 6

1.2.1 D´efinition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Comment repr´esenter le graphe d"une fonction de deux variables8

1.3 Exercices du TD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Correction des exercices. . . . . . . . . . . . . . . . . . . . . . . . . 18

2 D´eriv´ees partielles, Diff´erentielles27

2.1 Rappel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 D´eriv´ees partielles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Diff´erentielles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Utilisation des diff´erentielles, diff´erentielle d"une fonction compos´ee. 32

2.5 Exercices du TD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Correction des exercices. . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Approximation affine, Calcul d"incertitude45

3.1 Approximation d"une fonction `a une seule variable. . . . . . . . . . . 45

3.2 Approximation d"une fonction de plusieurs variables. . . . . . . . . . 47

3.3 Calcul d"erreur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Le cas des fonctions d"une seule variable. . . . . . . . . . . . 48

3.3.2 Le cas des fonctions de plusieurs variables. . . . . . . . . . . 50

3.4 Exercices du TD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Correction des exercices. . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Extrema d"une fonction de deux variables63

4.1 Rappel dans le cas d"une seule variable. . . . . . . . . . . . . . . . . 63

4.2 Extr´emum local d"une fonction de plusieurs variables. . . . . . . . . 66

4.3 Exercices du TD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Correction des exercices. . . . . . . . . . . . . . . . . . . . . . . . . 75

iii ivTABLE DES MATI`ERES

II´Equations diff´erentielles83

1´Equations diff´erentielles lin´eaires d"ordre 185

1.1 Pr´esentation g´en´erale. . . . . . . . . . . . . . . . . . . . . . . . . . . 85

1.1.1´Equations diff´erentielles et int´egration. . . . . . . . . . . . . 86

1.1.2 Solutions d"une ´equation diff´erentielle. . . . . . . . . . . . . . 86

1.1.3 Interpr´etation g´eom´etrique. . . . . . . . . . . . . . . . . . . . 87

1.2 M´ethodes de r´esolution des ´equations diff´erentielles lin´eaires d"ordre 189

1.2.1´Equation homog`ene. . . . . . . . . . . . . . . . . . . . . . . . 90

1.2.2 Calcul d"une solution particuli`ere. . . . . . . . . . . . . . . . 91

1.2.3 Solution g´en´erale. . . . . . . . . . . . . . . . . . . . . . . . . 93

1.2.4 Astuces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

1.3 Exercices du TD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

1.4 Correction des exercices. . . . . . . . . . . . . . . . . . . . . . . . . 99

2´Equations diff´erentielles lin´eaires d"ordre 2 `a coefficients constants107

2.1 G´en´eralit´es. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

2.2 R´esolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

2.2.1 R´esolution de l"´equation homog`ene associ´ee. . . . . . . . . . 108

2.2.2 Calcul d"une solution particuli`ere. . . . . . . . . . . . . . . . 111

2.3 Exercices du TD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

2.4 Correction des exercices. . . . . . . . . . . . . . . . . . . . . . . . . 115

III Annexes123

A D´eriv´ees et primitives usuelles125

B Annales corrig´ees127

C Trouver l"erreur177

D Alphabet grec181

Premi`ere partie

Fonctions de plusieurs variables

1 Jusqu"`a pr´esent vous avez surtout rencontr´e des fonctionsd"une variable. Cepen- dant les ph´enom`enes naturels ne d´ependent pas en g´en´erald"une seule variable. Par exemple : la vitesse moyennevd´epend de la distance parcouruedet du tempstmis pour effectuer ce parcours, on av=d/t. Un autre exemple est donn´e par le calcul de l"aire d"un rectangle :A=L×l. L"aire est une fonction de la longueurLet de la largeurl. Dans cette partie, nous allons ´etudier les fonctions de plusieurs variables. Nous aurons une attention toute particuli`ere pour les fonctionsde deux variables car dans ce cas nous pourrons encore faire des dessins. Ensuite nousverrons que nous

pouvons aussi faire des calculs de d´eriv´ees. Cela sera utilis´e pour effectuer des calculs

d"incertitude et pour trouver les extrema (maximum, minimum) d"une fonction de plusieurs variables. 3 4

Chapitre 1Fonctions de plusieurs variables

Nous allons dans ce chapitre d´efinir les fonctions de plusieurs variables. Nous nous int´eresserons plus particuli`erement aux fonctions de deux variables et aux diverses repr´esentations graphiques que l"on peut obtenir.

1.1 D´efinition

L"exemple le plus simple de fonctions de deux variables est donn´e par l"aire d"un rectangle :A=L×l.Letl´etant des nombres positifs nous repr´esentons cette fonction de la mani`ere suivante : f:R+×R+-→R (L,l) ?-→L×l R +×R+s"appelle le domaine de d´efinition de la fonctionf. D"une mani`ere g´en´erale nous pouvons avoirnvariables o`und´esigne un nombre entier. D´efinition 1.Soitnun nombre entier etDune partie deRn. Une fonctionfde nvariables est un proc´ed´e qui a toutn-uplet(x1,...,xn)deDassocie un unique nombre r´eel.

Cela se note de la mani`ere suivante :

f:D -→R (x1,...,xn)?-→f(x1,...,xn)

Dest le domaine de d´efinition def.

Remarque : La notation (x1,...,xn) est l`a pour montrer que nous avonsnva- riables. En pratique, lorsque nous n"avons que deux variables nous les notonsxety plutˆot quex1etx2. 5

6Fonctions de plusieurs variables

Par exemple, la fonction suivante donne la distance d"un point de coordonn´ees (x,y) `a l"origine du plan. f:

R2-→R

(x,y)?-→?x2+y2 fest une fonction de deux variables,R2est son domaine de d´efinition. Voici, ici un exemple d"une fonction de trois variables : (x;y;z). g:R×R×R?-→R (x,y,z)?-→xcos(y) + 2y3-π z5 gest une fonction de trois variables,

R×R×R?est son domaine de d´efinition.

Exercice 1.La formule suivante permet de d´efinir une fonction de 2 variables : f(x,y) = ln(x) + sin(y)

1. Donner l"image de(e,0).

2. Donner le plus grand domaine de d´efinition possible pourf.

Solution :

1.f(e,0) =

ln(e) + sin(0) = 1 + 0 = 1.

L"image de (e,0) parfest1.

2. Pour que ln(x) existe il faut (et il suffit)quex >0. Doncx?R+,?.

sin(y) existepour touty?R. Doncy?R. Ainsi le plus grand domaine de d´efinition possible pourfest :R+,?×R.

1.2 Repr´esentation graphique d"une fonction de

deux variables

1.2.1 D´efinition

Avant de donner la d´efinition du graphe d"une fonction de deux variables nous allons rappeler ce qu"est le graphe d"une fonction d"une variable.

D´efinition 2.Soit

f:D -→R x?-→f(x) Le grapheCfdef(fonction d"une seule variable) est l"ensemble des points du plan de coordonn´ees (x;f(x))avecx? D.

Cela se note :

Cf={(x,y)?R2|y=f(x), x? D}

1.2 Repr´esentation graphique d"une fonction de deux variables7

Ainsi pour tracer le graphe d"une fonction d"une variable nous avons rajout´e une nouvelle variabley.

Le graphe est alors une courbe dans le planR2.

Pour les fonctions de deux variablesxetynous allons aussi rajouter une variablez et le graphe sera alors une surface de l"espaceR3.

D´efinition 3.Soit

f:D -→R (x,y)?-→f(x,y) Le grapheSfdef(fonction de deux variables) est l"ensemble des points de l"espace de coordonn´ees (x;y;f(x,y))avec(x,y)? D.

Cela se note :

Sf={(x,y,z)?R3|z=f(x,y),(x,y)? D}

Remarque :

Sfest une surface dansR3.

A chaque point (x,y)? Dcorrespond un point sur la surfaceSf. Voici comment on place les points dans un rep`ere. (x,y) z x y (x,y,f(x,y)) Figure1.1 - Utilisation d"un rep`ere `a 3 dimensions. Afin de vous familiariser avec les graphes des fonctions de deux variables voici quelques exemples.

8Fonctions de plusieurs variables

-10 -5 0 5 10 -10 -5 0 5 10 -0.5 0 0.5 1 Figure1.2 - Repr´esentation graphique dez=sin(?x2+y2)?x2+y2. -2 -1 0 1 2 -2-1.5-1-0.500.511.52 -0.4 -0.2 0 0.2 0.4 Figure1.3 - Repr´esentation graphique dez=xye-0.5(x2+y2).

1.2.2 Comment repr´esenter le graphe d"une fonction de

deux variables Nous savons faire des dessins dans un plan, donc pour faire des dessins dans l"espace nous allons nous ramener `a ce que nous savons faire...C"est `a dire nous allons dessiner la "trace" de la surface sur les plansxOz,yOzetxOy. Auparavant nous allons rappeller quelques propri´et´es des plans de l"espace.

Proposition 1.

- Un plan parall`ele au planxOya pour ´equation : z=z0

Ce plan contient le point(0,0,z0).

- Un plan parall`ele au planxOza pour ´equation : y=y0

Ce plan contient le point(0,y0,0).

- Un plan parall`ele au planyOza pour ´equation : x=x0

Ce plan contient le point(x0,0,0).

1.2 Repr´esentation graphique d"une fonction de deux variables9

Remarque : Ces deux derniers plans ne sont pas des repr´esentations graphiques d"une fonction de deux variables (x,y). En effet nous ne pouvons pas faire corres- pondre un point de (xOy) avec un seul point de ces plans.

Exercice 2.Soit

f:R2-→R (x,y)?-→x2+y2

1. D´eterminer, nommer et tracer la projection dans le planxOzdeSf∩{y=k}

pourk= 1;2;puis pourk?R.

2. Est ce queSf∩ {y=k}est le graphe d"une fonction d"une variable? Si oui,

laquelle?

3. D´eterminer, nommer et tracer la projection dans le planyOzdeSf∩{x= 0}.

4. Est ce queSf∩ {x= 0}est le graphe d"une fonction d"une variable? Si oui,

laquelle?

5. D´eterminer et nommer la projection dans le planxOydeSf∩ {z=k}pour

k= 1;2;0;-1puis pourk?R+.

6. Est ce queSf∩ {z=k}est le graphe d"une fonction d"une variable? Si oui,

laquelle?

7. En d´eduire la repr´esentation graphique def.

Solution :

1. -Sf∩ {y= 1}=

{(x,y,z)?R3|z=x2+y2, y= 1}.

Sf∩ {y= 1}={(x,1,z)?R3|z=x2+ 12}.

La projection dans le planxOzdeSf∩ {y= 1}est : {(x,z)?R2|z=x2+ 1}

Nous obtenonsune parabole de sommet (0,1).

- La projection dans le planxOzdeSf∩ {y= 2}est : {(x,z)?R2|z=x2+ 4}

Nous obtenonsune parabole de sommet (0,4).

- La projection dans le planxOzdeSf∩ {y=k}est : {(x,z)?R2|z=x2+k2}

Nous obtenonsune parabole de sommet (0,k2).

10Fonctions de plusieurs variables

xz k 2

Figure1.4 - Coupe deSfpar le plany=k.

2.Sf∩ {y=k}est le graphe de la fonction d"une seule variable :

fy=k:R-→R x?-→x2+k2

3.Sf∩ {x= 0}={(x,y,z)?R3|z=x2+y2, x= 0}.

Sf∩ {x= 0}={(0,y,z)?R3|z= 0 +y2}.

La projection dans le planyOzdeSf∩ {x= 0}est : {(y,z)?R2|z=y2}

Nous obtenonsune parabole de sommet (0,0).

4.Sf∩ {x= 0}est le graphe de la fonction d"une seule variable :

fx=0:R-→R y?-→y2

5. -Sf∩ {z= 1}={(x,y,z)?R3|z=x2+y2, z= 1}.

Sf∩ {z= 1}={(x,y,1)?R3|1 =x2+y2}.

La projection dans le planxOydeSf∩ {z= 1}est : {(x,y)?R2|1 =x2+y2}

Nous obtenonsle cercle de centreOet de rayon 1.

1.2 Repr´esentation graphique d"une fonction de deux variables11

- La projection dans le planxOydeSf∩ {z= 2}est : {(x,y)?R2|2 =x2+y2}

Nous obtenons

le cercle de centreOet de rayon⎷2. - La projection dans le planxOydeSf∩ {z= 0}est : {(x,y)?R2|0 =x2+y2}

Nous obtenons

le pointO(l"origine du rep`ere). - La projection dans le planxOydeSf∩ {z=-1}est : {(x,y)?R2| -1 =x2+y2}

Cet ensemble est

vide car la somme de deux carr´es est n´ecesairement positive. - La projection dans le planxOydeSf∩ {z=k}est : {(x,y)?R2|k=x2+y2} Commek >0, nous obtenonsle cercle de centreOet de rayon⎷k.

6.Un cercle ne pas ˆetre la repr´esentation graphique d"une fonctiond"une seule

variable. 7. 2468
-2 -112 y-2x Figure1.5 - Repr´esentation graphique dez=x2+y2.

12Fonctions de plusieurs variables

Avant de donner la d´emarche g´en´erale pour obtenir le graphe d"une fonction de deux variables nous allons donner quelques d´efinitions.

D´efinition 4.

- L"intersectionSf∩ {x=x0}est la trace deSfdans le plan{x=x0}.

Cela repr´esente

la tranche verticale deSfavec le plan{x=x0}. - L"intersectionSf∩ {y=y0}est la trace deSfdans le plan{y=y0}.

Cela repr´esente

la tranche verticale deSfavec le plan{y=y0}. - L"intersectionSf∩ {z=z0}est la trace deSfdans le plan{z=z0}.

Cet ensemble est aussi appel´e

ligne de niveauf(x,y) =z0, ou ligne de niveau z=z0. Cela repr´esentela tranche horizontaledeSfavec le plan{z=z0}.

Proposition 2.

-Sf∩ {x=x0}est le graphe de la fonction d"une seule variabley: fx=x0:y?-→f(x0,y). -Sf∩ {y=y0}est le graphe de la fonction d"une seule variablex: fy=y0:x?-→f(x,y0).

M´ethode g´en´erale

La m´ethode g´en´erale pour obtenir le graphe d"une fonction de deux variables est la suivante :

1. Pour quelques valeursx0, tracer la tranche verticale deSfavec le plan

{x=x0}.

2. Pour quelques valeursy0, tracer la tranche verticale deSfavec le plan{y=

y 0}.

3. "Relier le tout" `a l"aide de quelques lignes de niveau.

Remarque :

Lorsque nous avons suffisamment de tranche verticale, l"´etape 3n"est pas n´ecessaire pour faire apparaˆıtre la surface recherch´ee.

1.2 Repr´esentation graphique d"une fonction de deux variables13

Sujet de m´editation :

On consid`ere la fonction de trois variablesf(x,y,z) =x3+y3-z3.

D´eterminer la ligne de niveauf(x,y,z) = 0.

Dans cette ligne de niveau existe-t-il des triplets (x,y,z)??Z??3.

Cas g´en´eral :

On consid`ere la fonction de trois variablesf(x,y,z) =xn+yn-zn, o`un≥3.

D´eterminer la ligne de niveauf(x,y,z) = 0.

Dans cette ligne de niveau existe-t-il des triplets (x,y,z)??Z??3. Ce probl`eme correspond au dernier "th´eor`eme" de Fermat. Pierre de Fermat ´etait un magistrat et math´ematicien fran¸cais du XVII-`eme si`ecle. Il est n´e `a Beaumont

de Lomagne. Ce th´eor`eme a ´et´e d´emontr´e trois si`ecles plus tard en 1994 par Andrew

Wiles.

14Fonctions de plusieurs variables

1.3 Exercices du TD

Exercice 1.D´eterminer et repr´esenter le plus grand domaine de d´efinition possible pour les fonctions suivantes :

1.f(x,y) =⎷

xy x2+y2,

2.f(x,y) =⎷

x+y+ 1 x-1,

3.f(x,y) = ln(xy),

4.f(x,y) =xln(y2-x),

5.f(x,y) =?

4x-x2+ 4y-y2,

6.f(x,y) =?

16-x2-y2.ln(x2+y2-9).

Exercice 2.Nous allons ´etudier la fonctionf(x,y) =y-x2.

1. Donner le plus grand domaine de d´efinition possible pourf.

2. Calculerf(1,2).

3. Tracer les courbes de niveauz= 0,z= 1etz= 2.

4. Tracer l"intersection deSfavec le plan d"´equationx= 0.

5. Donner une repr´esentation deSfdans l"espace.

Exercice 3.Soit

f:R2-→R (x,y)?-→ -1

2x-13y+ 1

1. D´eterminer le graphe def, puis reconnaˆıtre une "figure" de g´eom´etrie clas-

sique.

2. Repr´esenterSf.

Pour cela vous ferez apparaitre dans un mˆeme rep`ere : -Sf∩xOz. -Sf∩yOz. -Sf∩xOy.

1.3 Exercices du TD15

Exercice 4.La surfaceSfest le graphe de la fonctionf(x,y) =ex2-y. Une des figures ci-dessous repr´esente une courbe de niveau deSf. Laquelle? (Justifier votre choix.) a)

020406080100120140

-4 -2 2 4 x b) -4-22 4 -4 -2 2 4 x c)

0510152025

-4 -2 2 4 x d) -2-1012

1 2 3 4 5

x Exercice 5.Appariez chaque fonction avec un graphique. (Justifier votre choix.)quotesdbs_dbs44.pdfusesText_44
[PDF] bleu de thymol préparation

[PDF] vitesse en bout de pale eolienne

[PDF] boite de transmission principale hélicoptère

[PDF] schéma hélicoptère pdf

[PDF] vitesse pale helicoptere

[PDF] tour minute rotor helicoptere

[PDF] ecole de boulangerie et de pâtisserie de paris

[PDF] formation patissier paris

[PDF] ecole de patisserie paris

[PDF] formation adulte patisserie paris

[PDF] formation boulanger paris

[PDF] ecole de patisserie pour adulte

[PDF] cfa patisserie paris

[PDF] ecole de boulangerie pour adulte

[PDF] restauration commerciale définition