[PDF] Cours darithmétique la démonstration n'est





Previous PDF Next PDF



Cours darithmétique

n = n! k!(n−k)! un ∼ vn les suites (un) et (vn) sont équivalentes. 2Une somme 



[PDF] suites arithmetiques et suites geometriques [PDF] suites arithmetiques et suites geometriques

19 juin 2011 Pour tout entier naturel n on a : . Démonstration : La suite arithmétique (un) de raison r et de premier terme u0 vérifie la relation .



Notion darithmétique et lEnsemble des nombres entiers

Cours arithmétique avec Exercices avec solutions. PROF : ATMANI NAJIB. Tronc 3n2 + n ; n + (n + 1) + (n + 2) ; 5n2 + 5n +1 ; 8n2 + 8n +1 (n. + 1)(n + 2)(n + ...



[PDF] Arithmétique - Exo7 - Cours de mathématiques

Les calculs de cryptage se feront modulo n. • Le décodage fonctionne grâce à une variante du petit théorème de Fermat. 1. Division euclidienne et pgcd.



Résumé du cours darithmétique

Algorithme d'Euclide. Soit a ∈ Z∗ et b ∈ N∗. On cherche d = pgcd(a b). On note r0 = b.



cours darithmétique

Sin est un entier 1 on an = Σo(d). (Rappelons que la notation dn signifie que d divise n.) Sid divise n



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3. La suite est donc définie par : 0. 1. 3. 5 n.



Chapitre 6 Arithmétique dans N Dénombrement Chapitre 6 Arithmétique dans N Dénombrement

En effet tout nombre entier se décompose de mani`ere unique comme produit de nombres premiers. 2 Rudiments d'arithmétique dans N. 2.1 Multiples et diviseurs.



Cours numéro 6 : Arithmétique et cryptographie

Pour coder le message E n'a besoin que pq et de e



arithmetique-dans-z-resume-de-cours-1.pdf

e)Si un entier n'est divisible par aucun entier premier et qui vérifie 2 p n. ≤ alors est premier. Remarque : Cette propriété nous permet de 



Cours darithmétique

la démonstration n'est pas triviale sans bagage arithmétique. Une preuve possible consiste. `a utiliser la caractérisation de la divisibilité par les 



Cours : Arithmétique

Les calculs de cryptage se feront modulo n. • Le décodage fonctionne grâce à une variante du petit théorème de Fermat. 1. Division euclidienne et pgcd.



Résumé du cours darithmétique

Université Paris-Sud. Résumé du cours d'arithmétique. Les ensembles N et Z. N = {0 1



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

u2 = 13 u3 = 18. Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3. La suite est donc définie par : 0. 1. 3. 5 n n.



ARITHMETIQUE

Lise Jean-Claude - Cours d'arithmétique -Terminale S. 3/16. Démonstration : Soit E l'ensemble des entiers naturels n tels que n.b > a.



COURS ARITHMÉTIQUE Ensemble ? des entiers naturels.

Il est donc suffisant d'étudier les nombres premiers dans ?. Un entier naturel a est dit premier s'il est différent de 1 et admet comme diviseurs. 1 et a. 2- 



Cours darithmétique

Il n'est pas traité en cours sont des compléments de cours facultatifs. ... L'arithmétique est l'étude des propriétés des nombres entiers appelés aussi ...



XSane scanned image

COURS. D'ARITHMETIQUE. ECTION SUP. FE MATHEMATICION (Rappelons que la notation dn signifie que d divise n.) Si d divise n soit C



CHAPITRE 3 : CONGRUENCES ET ARITHMÉTIQUE MODULAIRE

?1 (mod p) si a n'est pas un carré modulo p. La conséquence de ce théorème que nous utiliserons dans ce cours est le théorème suivant. Théorème 6.8. Soit p un 



Extrait de cours de maths de 5e Chapitre 1 : Arithmétique

Donc 7 n'est pas un diviseur de 54 mais 7 est le diviseur dans cette division euclidienne. Si 54 = 6 × 9



Searches related to arithmétique dans n cours

Exercices corrigés d'arithmétique dans N D’où 10101 est divisible par 111 1 – Soit n N montrer que : (n2 + 1 – n )(n2 + 1 + n ) = n4 + n2 + 1 (n2 2+ 1 – n )(n + 1 + n ) = (n2 + 1 )2 2 n2 = n4 + 2n2 + 1 – n D’où (n2 2+ 1 – 2n )(n + 1 + n ) = n4 + n + 1

Cours darithmétique

Cours d"arithm´etique

Premi`ere partie

PierreBornsztein

XavierCaruso

PierreNolin

MehdiTibouchi

D´ecembre 2004

Ce document est la premi`ere partie d"un cours d"arithm´etique ´ecrit pour les ´el`eves pr´e-

parant les olympiades internationales de math´ematiques. Le plan complet de ce cours est :

1. Premiers concepts

2. Division euclidienne et cons´equences

3. Congruences

4.´Equations diophantiennes

5. Structure deZ/nZ

6. Sommes de carr´es

7. Polynˆomes `a coefficients entiers

8. Fractions continues

Cette premi`ere partie traite les quatre premiers chapitres. Les quatre derniers chapitres forment quant `a eux la deuxi`eme partie de ce cours. Contrairement `a la seconde partie, cette premi`ere partie se veut le plus ´el´ementaire

possible. Les notions abstraites, souvent plus difficiles `a assimiler, mais qui clarifient les id´ees

lorsqu"elles sont comprises, ne sont ´evoqu´ees que dans la seconde partie. Nous conseillons au lecteur de bien maˆıtriser ce premier tome avant de passer `a la lecture du second.

Les notions et les th´eor`emes introduits ici sont g´en´eralement tout `a fait suffisants pour

traiter les exercices propos´ees aux olympiades internationales de math´ematiques.

Vous trouverez `a la fin de chaque chapitre une s´erie d"exercices de difficult´e variable mais

indiqu´ee par des ´etoiles

1. Toutes les solutions sont rassembl´ees `a la fin du document.

Nous vous souhaitons bon apprentissage et bonne lecture. 1 Plus nous avons jug´e l"exercice difficile, plus le nombre d"´etoiles est important. 1

Liste des abbr´evations :

AMM American Mathematical Monthly

APMO The Asian Pacific Mathematics Olympiad

CG Concours g´en´eral

OIM Olympiades Internationales de Math´ematiques

SL Short List

TDV Tournoi Des Villes

Liste des notations :

?ensemble vide

Nensemble des entiers naturels (positifs ou nuls)

N ?ensemble des entiers naturels strictement positifs

Zensemble des entiers relatifs

Qensemble des nombres rationnels

Rensemble des nombres r´eelsPsymbˆole de sommation2Qsymbˆole de produit3 a|b adiviseb [x]partie enti`ere dex {x}partie d´ecimale dex pgcdplus grand commun diviseur a?bpgcd(a,b) ppcmplus petit commun multiple a?bppcm(a,b) a≡b(modN)aest congru `abmoduloN pun nombre premier v p(n)valuationp-adique den d(n)nombre de diviseurs positifs den

σ(n)somme des diviseurs positifs den

?fonction indicatrice d"Euler s b(n)somme des chiffres denen baseb π(n)nombre de nombres premiers inf´erieurs ou ´egaux `an a n...a0b´ecriture en baseb n!factorielle den:n! = 1×2× ··· ×n C k ncoefficient binomial : Ck n=n! k!(n-k)! u n≂vnles suites(un)et(vn)sont ´equivalentes 2 Une somme index´ee par l"ensemble vide est ´egale `a0.

3Un produit index´e par l"ensemble vide est ´egale `a1.

2

Table des mati`eres

1 Premiers concepts 4

1.1 Divisibilit´e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Nombres premiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Valuationp-adique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Quelques fonctions arithm´etiques . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Nombres rationnels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Division euclidienne et cons´equences 24

2.1 Division euclidienne et d´ecomposition en baseb. . . . . . . . . . . . . . . . 24

2.2 Algorithme d"Euclide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Algorithme d"Euclide ´etendu et th´eor`eme de B´ezout . . . . . . . . . . . . . . 28

2.4 Lemme de Gauss et cons´equences . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Congruences 37

3.1 D´efinition, premi`eres propri´et´es . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Crit`eres de divisibilit´e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Ordre d"un ´el´ement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Th´eor`eme chinois . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Congruences modulop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Congruences modulopn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7 Coefficients binomiaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.8 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4

´Equations diophantiennes 56

4.1 Quelques r´eflexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Utilisation des congruences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Descente infinie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4´Equations de degr´e2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5´Equations de degr´e3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Corrig´e des exercices 75

5.1 Exercices de"Premiers concepts». . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Exercices de"Division euclidienne et cons´equences». . . . . . . . . . . . . 103

5.3 Exercices de"Congruences». . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4 Exercices de"´Equations diophantiennes». . . . . . . . . . . . . . . . . . . 143

3

1 Premiers concepts

Cette section, comme son nom l"indique, pr´esente le concept de base de l"arithm´etique,

`a savoir la divisibilit´e. On introduit ensuite les nombres premiers ce qui permet d"´enoncer le

th´eor`eme fondamental de l"arithm´etique (c"est-`a-dire la d´ecomposition en facteurs premiers)

dans lequel les nombres premiers jouent le rˆole de briques ´el´ementaires pour la fabrication

des nombres.

1.1 Divisibilit´e

D´efinition 1.1.1Siaetbsont deux entiers, on dit queadiviseb, ou quebestdivisible para, s"il existe un entierqtel queb=aq. On dit encore queaest undiviseurdeb, ou que best unmultipledea. On le notea|b.

Propri´et´es

+Siaetbsont deux entiers avecb?= 0,bdiviseasi et seulement si la fractiona b est un entier. +Tous les entiers divisent0, et sont divisibles par1. +Un entiernest toujours divisible par1,-1,net-n. +Sia|b, etb|c, alorsa|c. +Sia|b1,b2,...,bn, alorsa|b1c1+b2c2+...+bncn, quels que soient les entiersc1,c2,...,cn. +Siadivisebetb?= 0, alors|a|6|b|. +Siadivisebetbdivisea, alorsa=±b. +Siaetbsont deux entiers tels quean|bnpour un entiern>1, alorsa|b.

Toutes les propri´et´es list´ees pr´ec´edemment sont imm´ediates, `a l"exception de la derni`ere dont

la d´emonstration n"est pas triviale sans bagage arithm´etique. Une preuve possible consiste

`a utiliser la caract´erisation de la divisibilit´e par les valuationsp-adiques (voir paragraphe

1.3). Voyons imm´ediatement deux exercices qui montrent comment on peut manipuler la no- tion de divisibilit´e :

Exercice

: Soientxetydes entiers. Montrer que2x+ 3yest divisible par7si et seulement si5x+ 4yl"est.

Solution

: Supposons que7divise2x+3y, alors il divise6(2x+ 3y)-7(x+ 2y) = 5x+4y. R´eciproquement si7divise5x+ 4y, il divise6(5x+ 4y)-7(4x+ 3y) = 2x+ 3y.⎷

Exercice

: Pour quels entiersnstrictement positifs, le nombren2+ 1divise-t-iln+ 1?

Solution

: Sin2+1divisen+1, comme tout est positif, on doit avoirn2+16n+1, ce qui n"est v´erifi´e que pourn= 1. On v´erifie ensuite quen= 1est bien solution.⎷ 4

Parties enti`eres

D´efinition 1.1.2Sixest un r´eel, on appellepartie enti`eredex, et on note[x], le plus grand entier inf´erieur ou ´egal `ax. Ainsi, on a[x]6x <[x] + 1. Remarque.On d´efinit aussi lapartie d´ecimaledex, comme la diff´erencex-[x]. La partie

d´ecimale dexest souvent not´ee{x}. Cette notion est moins utilis´ee que la notion de partie

enti`ere et les conventions de notations sont moins usuelles `a ce propos : lors d"un exercice,

ou d"un expos´e, il est toujours de bon goˆut de commencer par pr´eciser les notations qui vont

ˆetre employ´ees par la suite.

Notons qu"il fautˆetre prudent avec les nombres n´egatifs : autant pour les nombres positifs, la partie enti`ere correspond au nombre auquel on retire ses chiffres apr`es la virgule, autant

ce n"est pas le cas pour les nombres n´egatifs. En effet, si on suit la d´efinition, on voit par

exemple que[-3,5] =-4.

Les parties enti`eres et parties d´ecimales ob´eissent `a quelques propri´et´es ´el´ementaires que

nous listons ci-dessous :

Propri´et´es ´el´ementaires

+On a toujoursx= [x] +{x}. +Pour tout r´eelx, on ax-1<[x]6x +Sixest entier,[x] =xet{x}= 0. Et r´eciproquement si l"une des deux ´egalit´es est v´erifi´ee, alorsxest entier. +[-x] =-[x]-1sauf sixest entier, auquel cas[-x] =-[x]. +Sixetysont deux r´eels,[x] + [y]6[x+y]6[x] + [y] + 1. +Sim >0est un entier, alors il y a exactement[x m ]multiples demcompris entre1et x.

La d´emonstration des propri´et´es consiste en de simples manipulations de la d´efinition et

principalement de l"in´egalit´e[x]6x <[x] + 1. Elle est laiss´ee au lecteur. On remarquera que tr`es souvent les questions faisant intervenir des parties enti`eres se r´esument `a de la manipulation d"in´egalit´es comme le montre par exemple l"exercice suivant :

Exercice

: On suppose que4n+ 2n"est pas le carr´e d"un nombre entier. Montrer que pourquotesdbs_dbs2.pdfusesText_3
[PDF] arithmétique dans n exercices corrigés

[PDF] arithmétique dans n exercices corrigés tronc commun

[PDF] arithmétique dans n tronc commun

[PDF] arithmétique dans z cours pdf

[PDF] arithmétique dans z exercices corrigés mpsi

[PDF] arithmétique exercices et problèmes

[PDF] arithmétique terminale s exercices corrigés

[PDF] arjel analyse trimestrielle

[PDF] arjel t1 2016

[PDF] arjel t2 2016

[PDF] armande le pellec muller

[PDF] armature urbaine définition

[PDF] armement du chevalier

[PDF] armes autorisées en belgique

[PDF] armor electric system