[PDF] SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES





Previous PDF Next PDF



SCIENCES DE LINGENIEUR

Alors dans l'absence presque sûre d'un manuel pour nos élèves de la 1ere STE Si vous jugez bon de nous faire une de vos précieuses remarques n'hésitez.



Première S - Statistiques descriptives - Variance et écart type

Si les valeurs de la série possèdent une unité l'écart type s'exprime dans la même unité. Autre formule pour calculer la variance :.



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Si le premier terme est égal à 3 les premiers termes successifs sont : u0 = 3



Classes des élèves du niveau PREMIÈRE

1ERE S-SI. ADMANTA Célia. PREMIERE STMG. AFONSO Lucas. 1ERE S-SVT. AIT KACI Idris. 1ERE S-SI. AKHOUCHE Sirine. 1ES1. ALVES CUNHA Tiphaine. 1ERE S-SVT.



Prise en charge des patients adultes atteints dhypertension

toire isolée) et de s'assurer de la permanence de l'HTA. si PA entre 140-179/90-109 mmHg et en l'absence d'une atteinte des organes cibles



Les phrases de condition web exercices et corrigé

Sylvie Auger ÉIF UQTR. Page 3. Exercice 4. Complétez les phrases suivantes pour former une hypothèse sur le présent. 1. Si nous (savoir). parler votre langue 



Système du premier ordre

La pulsation de coupure à - 3 dB ?c est donc égale à la pulsation propre ?0 du système du premier ordre. A cette pulsation : ? = -?/4 si A0 > 0



Première S - Equations cartésiennes dune droite

La donnée d'un point A et d'un vecteur non nul définissent une unique droite (d). • Deux droites (d) et (d') sont parallèles si tout vecteur directeur de l'une 



Systèmes linéaires

deux inconnues (S ) : {?x + y = 1 y = 4 et d'une équation de « compatibilité » sans inconnue : a ? 17 = 0. Cette dernière indique si le système (S) admet 



Cours 3 Module Informatique 1ere année Medecine Avril 2020

Excel ignorera si vous entrez 1270 et affiche 127. • Sélectionnez les cellules B4 à D17 en cliquant dans B4 et en maintenant le bouton gauche de la souris 

1

SUITES ARITHMETIQUES

ET SUITES GEOMETRIQUES

I. Suites arithmétiques

1) Définition

Exemple :

Considérons une suite numérique (u

n ) où la différence entre un terme et son précédent reste constante et égale à 5. Si le premier terme est égal à 3, les premiers termes successifs sont : u 0 = 3, u 1 = 8, u 2 = 13, u 3 = 18. Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3.

La suite est donc définie par : .

Définition : Une suite (u

n ) est une suite arithmétique s'il existe un nombre r tel que pour tout entier n, on a : .

Le nombre r est appelé raison de la suite.

Méthode : Démontrer si une suite est arithmétique

Vidéo https://youtu.be/YCokWYcBBOk

1) La suite (u

n ) définie par : est-elle arithmétique ?

2) La suite (v

n ) définie par : est-elle arithmétique ? 1) . La différence entre un terme et son précédent reste constante et égale à -9. (u n ) est une suite arithmétique de raison -9. 2) . La différence entre un terme et son précédent ne reste pas constante. (v n ) n'est pas une suite arithmétique.

Vidéo https://youtu.be/6O0KhPMHvBA

0 1 3 5 nn u uu 1nn uur u n =7-9n v n =n 2 +3 1

7917 979 9799

nn uunn nn 2 222
1

1332 13 321

nn vvnnnnn n 2

Propriété : (u

n ) est une suite arithmétique de raison r et de premier terme u 0

Pour tout entier naturel n, on a : .

Démonstration :

La suite arithmétique (u

n ) de raison r et de premier terme u 0 vérifie la relation

En calculant les premiers termes :

Méthode : Déterminer la raison et le premier terme d'une suite arithmétique

Vidéo https://youtu.be/iEuoMgBblz4

Considérons la suite arithmétique (u

n ) tel que et .

1) Déterminer la raison et le premier terme de la suite (u

n

2) Exprimer u

n en fonction de n.

1) Les termes de la suite sont de la forme

Ainsi et

On soustrayant membre à membre, on obtient : donc .

Comme , on a : et donc : .

2) soit ou encore

2) Variations

Propriété : (u

n ) est une suite arithmétique de raison r. - Si r > 0 alors la suite (u n ) est croissante. - Si r < 0 alors la suite (u n ) est décroissante.

Démonstration : .

- Si r > 0 alors et la suite (u n ) est croissante. - Si r < 0 alors et la suite (u n ) est décroissante.

Exemple :

Vidéo https://youtu.be/R3sHNwOb02M

u n =u 0 +nr u n+1 =u n +r u 1 =u 0 +r 2100

2uururrur=+=++= +

3200

23uururrur=+=++= +

100
(1) nn uur unr ru nr u 5 =7 u 9 =19 u n =u 0 +nr 50

57uur=+=

90

919uur=+=

5r-9r=7-19

r=3 u 0 +5r=7 u 0 +5´3=7 u 0 =-8 0n uunr =+83 n un=-+´38 n un=- u n+1 -u n =u n +r-u n =r u n+1 -u n >0 u n+1 -u n <0 3

La suite arithmétique (u

n ) définie par est décroissante car de raison négative et égale à -4.

3) Représentation graphique

Les points de la représentation graphique d'une suite arithmétique sont alignés.

Exemple :

On a représenté ci-dessous la suite de raison -0,5 et de premier terme 4.

RÉSUMÉ

(u n ) une suite arithmétique - de raison r - de premier terme u 0

Exemple :

et

Définition

La différence entre un terme et son

précédent est égale à -0,5.

Propriété

Variations

Si r > 0 : (u

n ) est croissante.

Si r < 0 : (u

n ) est décroissante.

La suite (u

n ) est décroissante.

Représentation

graphique

Remarque :

Les points de la représentation

graphique sont alignés. u n =5-4n

0,5r=-

0 4u= 1nn uur 1 0,5 nn uu 0n uunr =+40,5 n un=-

0,50r=-<

4

II. Suites géométriques

1) Définition

Exemple :

Considérons une suite numérique (u

n ) où le rapport entre un terme et son précédent reste constant et égale à 2. Si le premier terme est égal à 5, les premiers termes successifs sont : u 0 = 5, u 1 = 10, u 2 = 20, u 3 = 40. Une telle suite est appelée une suite géométrique de raison 2 et de premier terme 5.

La est donc définie par : .

Vidéo https://youtu.be/WTmdtbQpa0c

Définition : Une suite (u

n ) est une suite géométrique s'il existe un nombre q tel que pour tout entier n, on a : .

Le nombre q est appelé raison de la suite.

Méthode : Démontrer si une suite est géométrique

Vidéo https://youtu.be/YPbEHxuMaeQ

La suite (u

n ) définie par : est-elle géométrique ? Le rapport entre un terme et son précédent reste constant et égal à 5. (u n ) est une suite géométrique de raison 5 et de premier terme .

Exemple concret :

On place un capital de 500€ sur un compte dont les intérêts annuels s'élèvent à 4%.

Chaque année, le capital est multiplié par 1,04. Ce capital suit une progression géométrique de raison 1,04.

On a ainsi :

De manière générale : avec

On peut également exprimer u

n en fonction de n :

Propriété : (u

n ) est une suite géométrique de raison q et de premier terme u 0

Pour tout entier naturel n, on a : .

0 1 5 2 nn uquotesdbs_dbs46.pdfusesText_46
[PDF] 1ere s si emploi du temps

[PDF] 1ere s si ou svt

[PDF] 1ère stmg bac gestion

[PDF] 1ere stmg débouchés

[PDF] 1st puc question papers commerce 2016

[PDF] 1st year commerce date sheet 2017

[PDF] 2 bac 2015

[PDF] 2 bac 2015 maroc

[PDF] 2 bac 2015 svt

[PDF] 2 bac 2016

[PDF] 2 bac chimie

[PDF] 2 bac comptabilité

[PDF] 2 bac économie

[PDF] 2 bac economie maroc

[PDF] 2 bac economie math