[PDF] Système du premier ordre La pulsation de coupure à - 3





Previous PDF Next PDF



SCIENCES DE LINGENIEUR

Alors dans l'absence presque sûre d'un manuel pour nos élèves de la 1ere STE Si vous jugez bon de nous faire une de vos précieuses remarques n'hésitez.



Première S - Statistiques descriptives - Variance et écart type

Si les valeurs de la série possèdent une unité l'écart type s'exprime dans la même unité. Autre formule pour calculer la variance :.



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Si le premier terme est égal à 3 les premiers termes successifs sont : u0 = 3



Classes des élèves du niveau PREMIÈRE

1ERE S-SI. ADMANTA Célia. PREMIERE STMG. AFONSO Lucas. 1ERE S-SVT. AIT KACI Idris. 1ERE S-SI. AKHOUCHE Sirine. 1ES1. ALVES CUNHA Tiphaine. 1ERE S-SVT.



Prise en charge des patients adultes atteints dhypertension

toire isolée) et de s'assurer de la permanence de l'HTA. si PA entre 140-179/90-109 mmHg et en l'absence d'une atteinte des organes cibles



Les phrases de condition web exercices et corrigé

Sylvie Auger ÉIF UQTR. Page 3. Exercice 4. Complétez les phrases suivantes pour former une hypothèse sur le présent. 1. Si nous (savoir). parler votre langue 



Système du premier ordre

La pulsation de coupure à - 3 dB ?c est donc égale à la pulsation propre ?0 du système du premier ordre. A cette pulsation : ? = -?/4 si A0 > 0



Première S - Equations cartésiennes dune droite

La donnée d'un point A et d'un vecteur non nul définissent une unique droite (d). • Deux droites (d) et (d') sont parallèles si tout vecteur directeur de l'une 



Systèmes linéaires

deux inconnues (S ) : {?x + y = 1 y = 4 et d'une équation de « compatibilité » sans inconnue : a ? 17 = 0. Cette dernière indique si le système (S) admet 



Cours 3 Module Informatique 1ere année Medecine Avril 2020

Excel ignorera si vous entrez 1270 et affiche 127. • Sélectionnez les cellules B4 à D17 en cliquant dans B4 et en maintenant le bouton gauche de la souris 

SSSeeerrrgggeee MMMOOONNNNNNIIINNN SSSyyyssstttèèèmmmeee ddduuu ppprrreeemmmiiieeerrr ooorrrdddrrreee 1

SYSTEMES LINEAIRES DU PREMIER ORDRE

SYSTEMEe(t) s(t)

Un système est dit linéaire invariant du premier ordre si la réponse s(t) est liée à l"excitation e(t) par

une équation différentielle linéaire à coefficients constants du premier ordre : tttt : constante de temps

A0 : coefficient d"amplification statique

La réponse indicielle est la réponse à un échelon défini ainsi :

· pour t < 0, e(t) = 0

· pour t ³ 0, e(t) = E

2.1 Solution de l"équation différentielle

L"équation différentielle du premier ordre admet pour solution s(t) la somme de deux termes s1 et s2

qui sont respectivement la solution générale de l"équation sans second membre et une solution

particulière avec second membre : s t k e s t A E s t s t s t A E k et t 1 2 0

1 2 0( ) .

-t t

La constante d"intégration k dépend des conditions initiales, c"est à dire de l"état du système au

moment où on lui applique l"échelon. Pour la déterminer, on reporte dans l"équation précédente la

valeur de s(t) à l"instant t = 0-.

Soit s(0 S A E k-

0 donc S) .= = +0 0 et k = S0 - A0

La solution de l"équation différentielle s"écrit donc :

Suivant que la valeur initiale

S0 de s est nulle, inférieure à A0.E ou supérieure à A0.E, nous obtiendrons différents types de réponse représentés ci-dessous pour

A0.E = 10.

2.2 Pente à l"origine

Le développement limité à l"origine de l"exponentielle nous donne l"expression de s(t) au voisinage de

zéro qui est l"équation de la tangente à l"origine :

A E S A E). t0001. ( . ( / )+--t

elle coupe la droite d"équation y(t) = A0.E à l"instant t = t. 1. DEFINITION ttds dts A e + =0. A où et sont des constantes0

2. REPONSE INDICIELLE

s t A E S A E et( ) . ( . )./= + --

0 0 0t

SSSeeerrrgggeee MMMOOONNNNNNIIINNN SSSyyyssstttèèèmmmeee ddduuu ppprrreeemmmiiieeerrr ooorrrdddrrreee 2

024681012

0 2 4 6 8 10 12

t/tttts(t)So = 0 La tangente à l"origine coupe l"axe s(t) = Ao.E à t = t

E = 10

Les courbes de réponse sont tracées en fonction de l"abscisse réduite t/t.

Pour déterminer la constante de temps d"un système du premier ordre, on peut tracer la tangente à

l"origine de sa courbe de réponse et déterminer l"instant où cette droite coupe celle d"équation :

y(t) = A0.E, mais cette méthode est imprécise car liée à la pente que l"on donne à la courbe à

l"origine.

On utilisera plutôt le fait qu"à l"instant

t = tttt, s(t) atteint 63% de A0.E. C"est donc à partir de l"intersection de la courbe de réponse avec la droite d"équation : y(t) = 0.63.A0.E que l"on déterminera la constante de temps d"un système du premier ordre. Lorsque les conditions initiales ne sont pas nulles, on doit considérer les 63% de la variation d"amplitude du signal s(t).

Pour l"exemple ci-dessous

t est le temps au bout duquel s(t) atteint la valeur 3 + 0,63.7 = 7,41.

012345678910

0 2 4 6 8 10

t/ tttts(t)

So = 3

Ao.E = 10

SSSeeerrrgggeee MMMOOONNNNNNIIINNN SSSyyyssstttèèèmmmeee ddduuu ppprrreeemmmiiieeerrr ooorrrdddrrreee 3

Lorsqu"on observe la réponse d"un système, on peut distinguer deux régimes : · le régime transitoire pendant lequel la réponse varie · le régime permanent qui correspond à sa stabilisation.

Quelles que soient les conditions initiales, le régime permanent d"un système du premier ordre peut

être considéré atteint au bout d"un temps t = 5.tttt.

0246810121416

0 2 4 6 8 10

t/ tttts(t)

So = 15

Ao.E = 10

2.3 Temps de réponse à 5%

On appelle temps de réponse à x % est le temps au bout duquel s(t) parvient à la valeur A0.E à x%

près de la différence

½S0 - A0.E½

Le temps de réponse à 5% est le plus utilisé.

Dans le deuxième cas ci-dessus on écrira :

A E S A E).e A E S A E)t

0000000 05. ( . . , .( ./+ - = + --t

dans le troisième cas :

A E S A E).e A E A E St

0000000 05. ( . . , .( . )/+ - = - --t

(le premier cas est un cas particulier des deux précédents avec S

0 = 0)

dans tous les cas on aura : et--=/.t5102 soit :

On montre de la même manière que le temps de réponse à 1% est atteint au bout de 4,6.t. A t = 5.t, le

système se trouve donc à moins de 1% de son régime permanent.

2.4 Temps de montée

Le temps de montée est le temps qui s"écoule entre 10% et 90% de la variation du signal.

Soient t

1 et t2 les instants où la réponse vaut respectivement 10% et 90% de sa valeur finale.

A E e A E t Ln

A E e A E t Ln

donc : t t Lnt t 01 0 1 0 1 0 1

2 11 01 091 09 01

9 22. .( ) , . . . ( , ). .( ) , . . . ( , )

-t t t t t t t m tr5% = 3tttt tm = 2,2.tttt

SSSeeerrrgggeee MMMOOONNNNNNIIINNN SSSyyyssstttèèèmmmeee ddduuu ppprrreeemmmiiieeerrr ooorrrdddrrreee 4

L"excitation e(t) est alors sinusoïdale :

e(t) = E.sin(wt)

3.1 Fonction de transfert

Elle peut être calculer de deux manières :

· en calculant le rapport S/E des grandeurs complexes associées aux valeurs de e(t) et s(t)

· en reprenant l"équation différentielle du système et en passant à la notation complexe

De cette façon et en associant à une dérivée par rapport au temps un produit par jw, on obtient à partir

de l"équation différentielle du premier paragraphe : j S S A E S EA jA jwt wt w w 0 0 0 01 1. T d" où la fonction de transfert : wwww0 étant la pulsation propre du système.

Son module a pour expression :

T=+A 0 2 02 1w w/ et son argument : j w w j p w w= -arctan( si A , = - arctan( si A 00/ ) / )000 0> <

3.2 Asymptotes

· si wwww << wwww0 : T = A0 donc G = 20.log½A0½ l"asymptote est horizontale. j = 0 si A0 > 0, j = p si A0 < 0

· si

wwww >> wwww0 : TA j=0 0 w w/donc G = 20.log½A0½.w0 -20.logw

en coordonnées semi-logarithmiques cela correspond à une asymptote oblique de pente égale à

-20 dB/décade. j = -p/2 si A0 > 0, j = p/2 si A0 < 0

Les asymptotes se coupent en

wwww = wwww0 , pulsation obtenue en identifiant leurs équations.

3.3 Pulsation de coupure à - 3dB

C"est la pulsation wc pour laquelle le module de la fonction de transfert est égal au quotient de sa

valeur maximale par 2.

T=+=A A

c0 2

02012w w/

donc wc = w0

La pulsation de coupure à - 3 dB,

wwwwc est donc égale à la pulsation propre wwww0 du système du premier ordre.

A cette pulsation :

jjjj = -pppp/4 si A0 > 0, jjjj = 3pppp/4 si A0 < 0

3. REPONSE HARMONIQUE

SSSeeerrrgggeee MMMOOONNNNNNIIINNN SSSyyyssstttèèèmmmeee ddduuu ppprrreeemmmiiieeerrr ooorrrdddrrreee 5

3.4 Diagrammes de Bode

Les diagrammes de Bode sont représentés ci-dessous pour A0 = 1. Gain -45-40-35-30-25-20-15-10-50

0,01 0,1 1 10 100

f/foG(dB) La différence entre le diagramme réel et le diagramme asymptotique est de :

· 3 dB à f = f

0

· 1 dB à f = f

0/2 et à f = 2.f0.

Argument

-90-80-70-60-50-40-30-20-100

0,01 0,1 1 10 100

f/fof fff(degré) La différence de phase est de -45° à la fréquence f = f 0.

SSSeeerrrgggeee MMMOOONNNNNNIIINNN SSSyyyssstttèèèmmmeee ddduuu ppprrreeemmmiiieeerrr ooorrrdddrrreee 6

3.5 Relation entre temps de montée et fréquence de coupure

La constante de temps d"un système du premier ordre étant l"inverse de sa pulsation de coupure wc à

-3 dB, le temps de montée d"un système du premier ordre est donc lié à la fréquence de coupure

fc par la relation : t = 2,2.mtw p= =22 22 2, , c cf Le diagramme de Nyquist s"obtient en traçant dans le plan complexe la courbe d"affixe T (w) lorsque la

pulsation w (ou la fréquence f) varie entre zéro et l"infini. On montre qu"il s"agit d"un demi-cercle.

Diagramme de Nyquist

-0,6-0,5-0,4-0,3-0,2-0,10

0 0,2 0,4 0,6 0,8 1Re(T

)Im(T) w infiniw = 0 w = wo w

La courbe peut être obtenue théoriquement à partir des expressions des parties réelle et imaginaire de

la fonction de transfert :

T= =+=-

+S EA jAj 0 0 00 2 02 11 1 w w ww w w//

Donc :

( )( )Re/. / /T et Im T=+= -+A A0 2 020 0 2 02

1 1w w

ww w w

Elle peut également faire l"objet d"un relevé expérimental. Si les grandeurs d"entrée et de sortie sont

des tensions, on mesurera leurs amplitudes (ou leurs valeurs efficaces) et leur déphasage pour

différentes fréquences. Le rapport des amplitudes fournira le module et le déphasage, l"argument de la

fonction de transfert. tm = 0,35/fc.

4. DIAGRAMME DE NYQUIST

quotesdbs_dbs46.pdfusesText_46
[PDF] 1ere s si emploi du temps

[PDF] 1ere s si ou svt

[PDF] 1ère stmg bac gestion

[PDF] 1ere stmg débouchés

[PDF] 1st puc question papers commerce 2016

[PDF] 1st year commerce date sheet 2017

[PDF] 2 bac 2015

[PDF] 2 bac 2015 maroc

[PDF] 2 bac 2015 svt

[PDF] 2 bac 2016

[PDF] 2 bac chimie

[PDF] 2 bac comptabilité

[PDF] 2 bac économie

[PDF] 2 bac economie maroc

[PDF] 2 bac economie math