[PDF] Chapter 5 Thermodynamic potentials





Previous PDF Next PDF



FEUILLE N 1 : ENSEMBLES RELATIONS

https://www.math.u-bordeaux.fr/~frgaunar/td1.pdf



RELATION BINAIRE

2. Décrire la classe ? de l'élément . 3. Pourquoi l'application On considère dans la suite de l'exercice que l'ensemble est ordonné par la relation . 2.



ALGÈBRE Cours et Exercices Première Année LMD

2 Ensembles et Applications 3.1.1 Propriétés des relations binaires dans un en- ... La partie Solutions des exercices proposés que l'étudiant pourra.



Chapter 10 Grand canonical ensemble

The grand canonical ensemble is a generalization of the canonical ensemble two systems are in equilibrium with the thermal ... This relation yields.



1 Exemples simples de relations déquivalence 2 Construction de

Les exercices de cette section proposent plusieurs situations de ce type. Exercice 5. Soit E et F deux ensembles et f : E ? F une application. On définit le 



Relations et applications 1 Relation entre 2 ensembles. 2 Relation

Exemples 1.4 Quel est le graphe dans l'exemple ii) précédent? Exercice 1.5 Soit sur les ensembles A = [0



Chapter 5 Thermodynamic potentials

Maxwell relations. A Maxwell relation follows as discussed already in Sect. 4.4.2



Relation déquivalence relation dordre

Indication ?. Correction ?. Vidéo ?. [000212]. 2 Relation d'ordre. Exercice 3. Soit (E?) un ensemble ordonné. On définit sur P(E){/0} la relation ? par.



Logique ensembles et applications

Exercice 12 ***IT. Montrer que les assertions suivantes sont équivalentes (f est une application d'un ensemble E dans lui-même) : 1. f est injective. 2.



Ensembles Relations déquivalence

https://livres-mathematiques.fr/onewebmedia/L1-MI-arith-ch1.pdf

Chapter 5 Thermodynamic potentials

Chapter 5

Thermodynamic potentials

Thermodynamic potentials are

state functions that, together with the corresponding equa- tions of state, describe the equilibrium behavior of a system as a function of so-called "natural variables". The natural variables are a set of appropriate variables that allow to compute other state functions by partial di ff erentiation of the thermodynamic potentials.

5.1 Internal energy

U The basic relation of thermodynamics is given by the equation dU TdS m i =1 F i dq i j =1 j dN j (5.1) where F,q denote the set of conjugate intensive and extensive variables that characterize a system. For instance, for a gas F,q P,V and for a magnetic system F,q {B M}

Chemical potential.

The number of particles in the system is a natural extensive variable for the free energy, we did keep it hitherto constant. The number of particle of a distinct types j is denoted by N j in (5.1), where j = 1,...,α. The respective intensive variable, (and respectively the j ), is denoted the chemical potential

The chemical potential become identical to the

Fermi energy

for a gas of Fermions (at low temperatures, as we will discuss in Sect.

13.3). Note that diffusion processes (e.g.

across a membrane) may change individual N j . The number of particles needs therefore not to be constant.

Internal energy of a gas.

Eq. (

5.1) is equivalent to

dU TdS PdV

µdN ,

U U S,V,N )(5.2) 47

48CHAPTER 5. THERMODYNAMIC POTENTIALS

for a gas with one species of particle, which implies that T �∂U

S�

V,N P =�∂U

V�

S,N =�∂U

N�

S,V (5.3)

Response functions.

The experimentally important

response functions are obtained by second-order di ff erentiation of the internal energy, 2 U S 2 V,N =�∂T

S�

V,N =T C V ,C V

T�∂S

T�

V,N

T�

2 U S 2 V,N 1 2 U V 2 S,N -�∂P

V�

S,N =1 V S S =1

V�

2 U V 2 S,N 1

Maxwell relations.

A

Maxwell relation

follows, as discussed already in Sect.4.4.2, from the di ff erentiability of thermodynamic potentials. An example of a Maxwell relation derived from the di ff erential of the internal energy U U S,V,N ) is

V�

U∂N�

=∂∂N�

U∂V�

V�

S -�∂P

N�

V (5.4) which relates the change of the chemical potential with the volume V to the (negative of the) change of the pressure P with the number of particles N

5.1.1 Monoatomic ideal gas

For the monoatomic ideal we did

fi nd hitherto PV nRT, U 3

2nRT, C

V =3 2nR . We now use these relations to derive an expression for U in terms of its natural variables.

Entropy.

We start with the entropy

S T,V S T 0 ,V 0 ) =3nR

2log�TT

0 nR log�V V 0 3 nR

2log�UU

0 nR log�V V 0 of the ideal gas, as derived in Sect.

4.4.1, where we have used the ideal gas relation

U = 3 nRT/

2 to substitute

T and T 0 with U and U 0 in the second step.

5.1. INTERNAL ENERGY U49

With C V = 3 nR/

2 we may write equivalently

S S 0 C V = ln�U U 0 +2

3ln�VV

0 = ln� U U 0 �V V 0 2 3 (5.5) which can be solved for the internal energy as U S,V U 0 �V 0

V�

1 e S S 0 /C V = 5 3 (5.6) Eq. (

5.6) is the fundamental equation for the ideal gas, with U(S,V ) as the thermodynamic

potential. S,V are the independent natural variables.

5.1.2 Thermodynamic potential vs. equation of state

The natural variables for

U are S and V , which means that if the function U S,V ) is known for a given system we can obtain -all- thermodynamic properties of the system through the di ff erentiation of U S,V ). The equation of state U U T,V,N )(5.7) for the internal energy U is on the contrary -not- a thermodynamic potential . This is because the fi rst derivatives of (

5.7) yield the specific heat C

V and the energy equation

4.12),�∂U

T�

V C V ,�∂U

V�

T

T�∂P

T�

V P , but not the dependent variables S and P . Note the marked di ff erence to ( 5.3).

5.1.3 Classical mechanics vs. thermodynamics

There is a certain analogy between the potential

V and internal energy U of classical mechanics and thermodynamics respectively:

Classical mechanicsThermodynamics

PotentialV (x,y,z)U(S,V,N)

Independent variablesx,y,zS,V,N

quotesdbs_dbs29.pdfusesText_35
[PDF] 1 Ouvert, fermé, compact

[PDF] La fonction logarithme népérien - Académie en ligne

[PDF] Fonction carré - Free

[PDF] Fonction inverse - Free

[PDF] Fonctions 1-def

[PDF] Les ensembles de nombres

[PDF] Méthodes sur le produit scalaire

[PDF] Intégration et théorie de la mesure

[PDF] 1 Ouvert, fermé, compact

[PDF] 1 Ouvert, fermé, compact

[PDF] Exercice 4 (fiche 2) Etablir si les ensembles sont ouverts, fermés

[PDF] Ouverts et fermés

[PDF] Logique, ensembles et applications - Exo7 - Emathfr

[PDF] enseñar geografía para los nuevos tiempos - Revistas UPEL

[PDF] calendrier des concours MINESUPpdf