[PDF] Cours de statistique descriptive - Archive ouverte HAL





Previous PDF Next PDF



Quelle est la « bonne » formule de lécart-type

Par définition l'écart-type est la moyenne quadratique des écarts à la moyenne x . Le biais est plus simple à exprimer dans le cas de la variance.



Première ES - Statistiques descriptives - Variance et écart type

Variance et écart type. I) Rappel : la moyenne (caractéristique de position ). 1) Définition. Soit la série statistique définie dans le tableau suivant :.



Document Cofrac SH GTA 04

11.2 Processus simple – méthode qualitative : détermination des groupes étant égale au triple de l'écart-type obtenu à partir du signal correspondant à ...



MODELES LINEAIRES

5.1.2 Le modèle de régression linéaire simple . 8.2.3 Variance empirique et écart-type empirique . ... Une autre définition de.



Régression linéaire simple

(4) écart-type de ? ?1 : sb1. 3.2 Qualité d'ajustement. Il est d'usage de décomposer les sommes de carrés des écarts à la moyenne.



MESURES ET INCERTITUDES

On distingue deux types d'erreurs de mesures. L'incertitude associée est une incertitude de répétabilité dite de type A. ... l'écart-type.



Cours de statistique descriptive - Archive ouverte HAL

2 août 2016 à calculer des caractéristiques de dispersion (écart-type ... C'est la plus simple et la communément utilisée et ce



Guide de validation des méthodes danalyses

28 oct. 2015 Note 1 : Le biais absolu l'écart-type de répétabilité



Première S - Statistiques descriptives - Variance et écart type

Autre formule pour calculer la variance : V = ?. ?. Exemple : Démonstration : En reprenant la formule de définition : V = ?.



LES TESTS DHYPOTHÈSE

DÉFINITION DES CONCEPTS UTILES A L'ÉLABORATION DES. TESTS D'HYPOTHÈSE. Hypothèse statistique X1 suit alors une loi normale de moyenne m1 et d'écart-type.

Quelle est la définition de l'écart type?

En mathématiques, l’ écart type (aussi orthographié écart-type) est une mesure de la dispersion des valeurs d'un échantillon statistique ou d'une distribution de probabilité. Il est défini comme la racine carrée de la variance ou, de manière équivalente, comme la moyenne quadratique des écarts par rapport à la moyenne.

Comment calculer un écart type ?

diviser la somme des carrés par l'effectif total de l'échantillon moins 1 (n - 1). Enfin, le calcul de la racine carrée de la variance de l'échantillon va permettre d'obtenir l'écart type. Cela consiste donc à prendre la valeur de la variance et de calculer sa racine carrée. Voici un exemple pour bien comprendre comme calculer un écart type.

Quelle est la limite de l'écart type?

Les écarts par rapport à la moyenne sont maintenant de 0 m, 0,20 m, 0,20 m et 0 m, respectivement. Ainsi l'écart type est la moyenne quadratique de ces écarts, c'est-à-dire , qui vaut environ 0,14 m .

Comment calculer la variance et l’écart type ?

La variance et l’écart type permettent de mesurer la « dispersion » des valeurs de la série autour de la moyenne. Si les valeurs de la série possèdent une unité, l’écart type s’exprime dans la même unité. Autre formule pour calculer la variance : V =. Ú bz.

  • Past day

Cours de statistique descriptive - Archive ouverte HAL >G A/, +2H@yRjRd8N3 ?iiTb,ff?HXb+B2M+2f+2H@yRjRd8N3 am#KBii2/ QM k m; kyRe >GBb KmHiB@/Bb+BTHBM`v QT2M ++2bb `+?Bp2 7Q` i?2 /2TQbBi M/ /Bbb2KBMiBQM Q7 b+B@

2MiB}+ `2b2`+? /Q+mK2Mib- r?2i?2` i?2v `2 Tm#@

HBb?2/ Q` MQiX h?2 /Q+mK2Mib Kv +QK2 7`QK

i2+?BM; M/ `2b2`+? BMbiBimiBQMb BM 6`M+2 Q` #`Q/- Q` 7`QK Tm#HB+ Q` T`Bpi2 `2b2`+? +2Mi2`bX /2biBMû2 m /ûT¬i 2i ¨ H /BzmbBQM /2 /Q+mK2Mib b+B2MiB}[m2b /2 MBp2m `2+?2`+?2- Tm#HBûb Qm MQM-

Tm#HB+b Qm T`BpûbX

*Qm`b /2 biiBbiB[m2 /2b+`BTiBp2 hQ +Bi2 i?Bb p2`bBQM, "`/BM "?QmvBHX *Qm`b /2 biiBbiB[m2 /2b+`BTiBp2X .1l:X *QM;Q@"`xxpBHH2X kyReX +2H@yRjRd8N3

ECO STAT CONSULTING

ESC

OptionHDTSAnnée académique2

Rédigé par

BAHOUAYILA MILONGO Chancel Bardin1

1

REPUBLIQUE DU CONGO

Institut Africain de la Statistique

(IAS)

ECO STAT CONSULTING

ESC

Sommaire

INTRODUCTION

CHAPITRE

I I I I I I

CHAPITRE

II II II II II

CHAPITRE

III III III- III

CHAPITRE

IV IV IV

ECO STAT CONSULTING

ESC

INTRODUCTION

En es les caractéristiques centrales graphiques (histogrammecaractéristiques de dispers statistique descriptive statistique inférentielle extrapoler prévisions de séries de l ne population ou un ensemble de

ECO STAT CONSULTING

ESC

CHAPITRE

PRÉSENTATION DES DONNÉES

La statistique

la planification du projet la publication des résultats. la statistique une statistique population. Les éléments de la population sont appelés individus . La population est étudiée selon un ou plusieurs caractères I

Exemples

IUNITINDIVIDU

élément de base constitutif de la population à laquelle il appartient. IÉ sous I

Exemple

I

Une variable statistique est dite de nature

iable qualitative sont les diff Ces ons

ECO STAT CONSULTING

ESC

Variable

Une variable statis

ne. statut matrimonial

Variable qualitative ordinale

Une variable statistique qualitative est dite

instruction. I quantitative. Les différentes entre les valeurs possède une signification, et sur lesquelles il est possible de réaliser

Variable quantitative discrète

Variable quantitative continue

intervalle, ces valeurs peuvent alors être regroupées en classes, et on parle dans ce I

Exemple

I

ECO STAT CONSULTING

ESC

CHAPITRE

CARACTÉRISTIQUES DE

DES DONNÉES

Les paramètres de tendance centrale ou " mesures de tendance centrale » sont des grandeurs " La moyenne " Le mode " La médiane. Ces statistiques ne se calculent que dans le cas où nous avons à faire à des variables . Dans le cas où nous avons des variables qualitatives, on procède aux fréquence. II

A chaque

ܑܠ, le nombreܑܖ

La fréquence relative i ݂௜ൌ௡೔

Exemple:

Xi ni 1 8 2 18 3 14 4 10

Total 50

Solution

Xi ni fi FCC FCD

1 8 8/50=0,16 0,16 1

2 18 18/50=0,36 0,16+0,36=0,52 1-0,16=0,84

3 14 14/50=0,28 0,52+0,28=0,8 0,84-0,36=0,48

4 10 10/50=0,2 0,8+0,2=1 0,48-0,28=0,2

Total 50 50/50=1

ECO STAT CONSULTING

ESC II

La moyenne constitue un

DESIGNATION NOTATION COURANTE

Moyenne arithmétique ࢄ

Moyenne géométrique ࡳ ࢕࢛ ࢞ࡳ Moyenne harmonique ࡴ ࢕࢛ ࢞ࡴ Moyenne quadratique ࡽ ࢕࢛ ࢞ࡽ

Attention !

II La moyenne arithmétique

C'est la plus simple et la communément utilisée et ce, pas toujours à bon escient. Elle se note

quotesdbs_dbs31.pdfusesText_37
[PDF] a quoi sert la variance

[PDF] que mesure l'écart type en statistique descriptive

[PDF] de l arbre en pour sa hauteur

[PDF] fabriquer un dendrometre

[PDF] propriété bissectrice

[PDF] fonctions du monologue

[PDF] rôle des médias en démocratie

[PDF] comment fabriquer une imprimante 3d

[PDF] l'impression 3d pour les nuls

[PDF] imprimante 3d ? fabriquer soi-même

[PDF] fabriquer imprimante 3d arduino

[PDF] média et opinion publique en france depuis l'affaire dreyfus

[PDF] medias et opinion publique en france depuis l affaire dreyfus conclusion

[PDF] phrase d accroche media et opinion publique

[PDF] socialisme communisme et syndicalisme en allemagne depuis 1875