[PDF] livre-analyse-1.pdf - Exo7 - Cours de mathématiques





Previous PDF Next PDF



( ) ( ) Exercices avec solutions : LIMITE ET CONTINUITE

Prof/ATMANI NAJIB. Année Scolaire 2018-2019 Semestre1. 1. Exercices avec solutions : Limite et continuité. Exercices d'applications et de réflexions.



Limite continuité

dérivabilité





2 Limites et continuité

Corrigé dans le livre. Exercice 57. 1) La fonction f est composée de fonctions dérivables sur I elle est donc dérivable sur I et.



Cours danalyse 1 Licence 1er semestre

4.1 Limite et continuité . 7 Corrigé des exercices ... (limite d'une suite continuité d'une fonction) et de rappeler les définitions élémentaires de la.



livre-analyse-1.pdf

fonctions : limite continuité



Feuille dexercices 10 Développements limités-Calculs de limites

Déterminer le développement limité à l'ordre 2 au voisinage de 0



Limites de fonctions et continuité - Lycée dAdultes

11 juil. 2021 2) La fonction f admet-elle une limite en 0 ? Interpréter géométriquement. EXERCICE 5. 1) Soit la fonction f définie par : f(x) = ex ...



ficall.pdf

Tous les exercices. Table des matières 306 422.00 Continuité uniforme continuité ... 342 483.00 Lois des grands nombres



Terminale S Exercices limites et continuité 2011-2012 1 Exercice 1

Terminale S. Exercices limites et continuité. 2011-2012. 1. Exercice 1 : limite finie en l'infini. Soit f la fonction définie sur]0;+ ?[ par f(x) = 3 +.



Limite continuité théorème des valeurs intermédiaires

Limites continuité dérivabilité Pascal Lainé 1 Limite continuité théorème des valeurs intermédiaires dérivabilité théorèmes de Rolle et des accroissements finis I Limites Continuités Exercice 1 : ( T)= T ?1+ T2??1+ T Déterminer les limites de si elle existent en 0 et en +?



Limites de fonctions et continuité

1) Etudier le sens de variation de g (+limites) et dresser son tableau de variation 2) Démontrer que l’équation g(x) = 0 admet une solution unique ? dans l’intervalle [20 ; 40] Donner un encadrement de



LIMITES – EXERCICES CORRIGES - Free

LIMITES – EXERCICES CORRIGES Cours et exercices de mathématiques M CUAZ http://mathscyr free Page 1/18 LIMITES – EXERCICES CORRIGES Exercice n°1 Déterminer la limite éventuelle en +?de chacune des fonctions suivantes : 1) fx x ()= 1 32) fx x()=? 43) fx x



Exercice 1 - univ-rennes1fr

Portail Maths et applications - L2 OM3 Universit e de Rennes 1 2018{2019 Feuille d’exercices num ero 2 : Fonctions de plusieurs variables limites et continuit e Correction de quelques exercices non trait es en TD Exercice 1 Donner l’ensemble de d e nition des la fonctions suivantes : f(x; y) = ln(x+ y); f(x; y) = p y 2x2; f(x; y) = ln



Limites de fonctions et continuité

EXERCICES 11 juillet 2021 à 9:31 Limites de fonctions et continuité Dé?nitions EXERCICE 1 Soit f dé?nie sur R par : f(x)=(x +2)e?x +1 et la droite d d’équation y =1 1) Tracer la fonction f et la droite d pour x ? [?3 ; 3]et y ? [?3 ; 4] Que peut-on conjecturer pour les limites de f en +? et ??? 2) Que représente la



Série d'exercices Math corrigés

Série d'exercices Math corrigés 1 Continuité et limites 3èmeMaths 09 – 10 www espacemaths com Exercice n°1 : © Soit fla fonction définie sur ¡*par 1 f()xx x Soit g la fonction définie sur ¡*par



TD :Exercices: LIMITE ET CONTINUITE - AlloSchool

Exercices : Limite et continuité Exercices d’applications et de réflexions PROF: ATMANI NAJIB 2BAC SM BIOF Exercice1 :Soit la fonction : f x x x: 2 3 12 Montrer en utilisant la définition que : lim 6fx xo 1 Exercice2 : Soit la fonction 1²: ²1 x fx x Etudier la limite de f en x 0 1



Limites et Continuité 2éme Année Bac - Dyrassa

Exercice 1:Calculer les limites suivantes : ???? Exercice 2: On considère la fonction f est définie par :{????(????)= ???? ( ????) ???? ????? ????( )= Montrer que la fonction f est continue en 0 ) 2éme Année Bac WWW Dyrassa com Exercice 3: On considère la fonction f est définie par :{????(????)= +????? ? ?????



Exo7 - Exercices de mathématiques

Limites Continuité en un point Exercices de Jean-Louis Rouget Retrouver aussi cette ?che sur www maths-france * très facile ** facile *** dif?culté moyenne **** dif?cile ***** très dif?cile I : Incontournable T : pour travailler et mémoriser le cours Exercice 1 ***I



Limites de fonctions - e Math

Limites de fonctions 1 Théorie Exercice 1 1 Montrer que toute fonction périodique et non constante n’admet pas de limite en +¥ 2 Montrer que toute fonction croissante et majorée admet une limite ?nie en +¥ Indication H Correction H Vidéo [000612] Exercice 2 1 Démontrer que lim x!0 p 1+x p 1 x x =1 2 Soient m;n des entiers positifs



Limites et continuité - Accueil

ECG1 Mathématiques Feuille no 10 : Limites et continuité Chapitre 10 Théorème des valeurs intermédiaires Exercice 12 (?) Montrer que les équations suivantes ont au moins une solution dans l’intervalle I : 1 ln(x) = 2? x sur I = [1;2] 2 x2018 ? x2019 = 1 sur I = [?1;1] 3 xln(x) = 2 sur I = [2;3] Exercice 13 (?)



Searches related to exercices corrigés limites et continuité pdf filetype:pdf

Les notions de limites et de continuité sont fondamentales en analyse Dans ce chapitre nous commencerons par introduire de manière rigoureuse les notions de limites de fonc-tions définies sur un intervalle deR puis nous complèterons les techniques de calcul de limites abordées dans le chapitre sur les suites convergentes Enfin nous

Comment calculer les limites de fonctions et continuité?

  • Limites de fonctions et continuité Dé?nitions EXERCICE1 Soitfdé?nie surRpar :f(x)=(x+2)e?x+1 et la droitedd’équationy=1. 1) Tracer la fonctionfet la droitedpourx? [?3 ; 3]ety? [?3 ; 4].

Comment calculer la continuité d'une fonction?

  • Soit la fonction dé?nie surR?{1} par :f(x)= 2x+sinx x?1 1) Déterminer les limites en ±? et en 1. 2) Déterminer les éventuelles asymptotes Continuité EXERCICE18 Soit la fonctionfdé?nie surRpar : ? ? ?

Comment calculer la continuite de la composee ?

  • Proposition 2.2 (Continuite de la composee) Soit f une application de DˆR dans R et gune application de EˆR de R. On suppose que Im(f) = ff(x);x2DgˆE(de sorte que gfest defnie sur D). Soit a2D. On suppose que f est continue en aet gest continue en f(a). Alors, gf est continue en a.

Comment calculer une fonction periodique admettant une limite ?

  • (1 + x) 1 x Exercice 1.16 (Fonction periodique admettant une limite) Soit fune application de R dans R. on suppose qu’il existe T>0 t.q. f(x+T) = f(x) pour tout x2R (on dit alors que fest periodique de periode T). On suppose de plus que fadmet une limite fnie, notee l, en +1. Montrer que fest une fonction constante.

ANALYSE

COURS DE MATHÉMATIQUES

PREMIÈRE ANNÉEExo7

À la découverte de l"analyseLes mathématiques, vous les avez bien sûr manipulées au lycée. Dans le supérieur, il s"agit d"apprendre à

les construire! La première année pose les bases et introduit les outils dont vous aurez besoin par la suite.

Elle est aussi l"occasion de découvrir la beauté des mathématiques, de l"infiniment grand (les limites) à

l"infiniment petit (le calcul de dérivée).

L"outil central abordé dans ce tome d"analyse, ce sont les fonctions. Vous en connaissez déjà beaucoup,

racine carrée, sinus et cosinus, logarithme, exponentielle... Elles interviennent dès que l"on s"intéresse à

des phénomènes qui varient en fonction de certains paramètres. Position d"une comète en fonction du

temps, variation du volume d"un gaz en fonction de la température et de la pression, nombre de bactérie en

fonction de la nourriture disponible : physique, chimie, biologie ou encore économie, autant de domaines

dans lesquels le formalisme mathématique s"applique et permet de résoudre des problèmes.

Ce tome débute par l"étude des nombres réels, puis des suites. Les chapitres suivants sont consacrés aux

fonctions : limite, continuité, dérivabilité sont des notions essentielles, qui reposent sur des définitions et

des preuves minutieuses. Toutes ces notions ont une interprétation géométrique, qu"on lit sur le graphe de la

fonction, et c"est pourquoi vous trouverez dans ce livre de nombreux dessins pour vous aider à comprendre

l"intuition cachée derrière les énoncés. En fin de volume, deux chapitres explorent les applications des

études de fonctions au tracé de courbes paramétrées et à la résolution d"équations différentielles.

Les efforts que vous devrez fournir sont importants : tout d"abord comprendre le cours, ensuite connaître

par cœur les définitions, les théorèmes, les propositions... sans oublier de travailler les exemples et les

démonstrations, qui permettent de bien assimiler les notions nouvelles et les mécanismes de raisonnement.

Enfin, vous devrez passer autant de temps à pratiquer les mathématiques : il est indispensable de résoudre

activement par vous-même des exercices, sans regarder les solutions! Pour vous aider, vous trouverez sur le

site Exo7 toutes les vidéos correspondant à ce cours, ainsi que des exercices corrigés. Alors n"hésitez plus : manipulez, calculez, raisonnez, et dessinez, à vous de jouer!

Sommaire

1 Les nombres réels1

1 L"ensemble des nombres rationnelsQ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Propriétés deR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Densité deQdansR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Borne supérieure

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Les suites15

1 Définitions

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Limites

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Exemples remarquables

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Théorème de convergence

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Suites récurrentes

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Limites et fonctions continues

37

1 Notions de fonction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 Limites

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Continuité en un point

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Continuité sur un intervalle

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Fonctions monotones et bijections

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Fonctions usuelles59

1 Logarithme et exponentielle

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2 Fonctions circulaires inverses

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3 Fonctions hyperboliques et hyperboliques inverses

. . . . . . . . . . . . . . . . . . . . . . . . 66

5 Dérivée d"une fonction

69

1 Dérivée

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2 Calcul des dérivées

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3 Extremum local, théorème de Rolle

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Théorème des accroissements finis

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Intégrales85

1 L"intégrale de Riemann

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2 Propriétés de l"intégrale

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3 Primitive d"une fonction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 Intégration par parties - Changement de variable

. . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Intégration des fractions rationnelles

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 Développements limités109

1 Formules de Taylor

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

2 Développements limités au voisinage d"un point

. . . . . . . . . . . . . . . . . . . . . . . . . . 114

3 Opérations sur les développements limités

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4 Applications des développements limités

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8 Courbes paramétrées

127

1 Notions de base

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

2 Tangente à une courbe paramétrée

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

3 Points singuliers - Branches infinies

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4 Plan d"étude d"une courbe paramétrée

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5 Courbes en polaires : théorie

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6 Courbes en polaires : exemples

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9 Équations différentielles

165

1 Définition

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

2 Équation différentielle linéaire du premier ordre

. . . . . . . . . . . . . . . . . . . . . . . . . 168

3 Équation différentielle linéaire du second ordre à coefficients constants

. . . . . . . . . . . 174

4 Problèmes conduisant à des équations différentielles

. . . . . . . . . . . . . . . . . . . . . . . 178

10 Leçons de choses185

1 Alphabet grec

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

2 Écrire des mathématiques : L

ATEX en cinq minutes. . . . . . . . . . . . . . . . . . . . . . . . . 186

3 Formules de trigonométrie : sinus, cosinus, tangente

. . . . . . . . . . . . . . . . . . . . . . . 188

4 Formulaire : trigonométrie circulaire et hyperbolique

. . . . . . . . . . . . . . . . . . . . . . 193

5 Formules de développements limités

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6 Formulaire : primitives

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 Index

Les nombres réelsChapitre

1 ?????■?????? ?? ??????? ??Q????R

MotivationVoici une introduction, non seulement à ce chapitre sur les nombres réels, mais aussi aux premiers chapitres

de ce cours d"analyse.

Aux temps des Babyloniens (en Mésopotamie de 3000 à 600 avant J.C.) le système de numération était

en base60, c"est-à-dire que tous les nombres étaient exprimés sous la formea+b60+c60

2+···. On peut

imaginer que pour les applications pratiques c"était largement suffisant (par exemple estimer la surface

d"un champ, le diviser en deux parties égales, calculer le rendement par unité de surface,...). En langage

moderne cela correspond à compter uniquement avec des nombres rationnelsQ.

Les pythagoriciens (vers 500 avant J.C. en Grèce) montrent quep2n"entre pas ce cadre là. C"est-à-dire quep2ne peut s"écrire sous la formepqavecpetqdeux entiers. C"est un double saut conceptuel : d"une part

concevoir quep2 est de nature différente mais surtout d"en donner une démonstration.

Le fil rouge de ce cours va être deux exemples très simples : les nombresp10et1,101/12. Le premier

représente par exemple la diagonale d"un rectangle de base3et de hauteur1; le second correspond par

exemple au taux d"intérêt mensuel d"un taux annuel de10%. Dans ce premier chapitre vous allez apprendre

à montrer quep10n"est pas un nombre rationnel mais aussi à encadrerp10et1,101/12entre deux entiers

consécutifs.

Pour pouvoir calculer des décimales après la virgule, voire des centaines de décimales, nous aurons besoin

d"outils beaucoup plus sophistiqués : une construction solide des nombres réels, l"étude des suites et de leur limites, l"étude des fonctions continues et des fonctions dérivables.

Ces trois points sont liés et permettent de répondre à notre problème, car par exemple nous verrons en

étudiant la fonctionf(x) =x2-10que la suite des rationnels(un)définie paru0=3etun+1=12 u n+10u nŠ

tend très vite versp10. Cela nous permettra de calculer des centaines de décimales dep10et de certifier

qu"elles sont exactes :p10=3,1622776601683793319988935444327185337195551393252168... LES NOMBRES RÉELS1. L"ENSEMBLE DES NOMBRES RATIONNELSQ2

1. L"ensemble des nombres rationnelsQ

1.1. Écriture décimale

Par définition, l"ensemble desnombres rationnelsest

Q=§pq

|p∈Z,q∈N∗ª

On a notéN∗=N\{0}.

Par exemple :

25
;-710 ;36 =12 .Les nombres décimaux, c"est-à-dire les nombres de la formea10 n, aveca∈Zetn∈N, fournissent d"autres exemples :

1,234=1234×10-3=12341000

0,00345=345×10-5=345100000

.Proposition 1.

Un nombre est rationnel si et seulement s"il admet une écriture décimale périodique ou finie.Par exemple :

35
=0,613 =0,3333... 1,179325←→325←→325←→...

Nous n"allons pas donner la démonstration mais le sens direct (=⇒) repose sur la division euclidienne. Pour

la réciproque (⇐=) voyons comment cela marche sur un exemple : Montrons quex=12,342021←-→2021←-→...

est un rationnel.

L"idée est d"abord de faire apparaître la partie périodique juste après la virgule. Ici la période commence

deux chiffres après la virgule, donc on multiplie par 100 :

100x=1234,2021←-→2021←-→... (1)

Maintenant on va décaler tout vers la gauche de la longueur d"une période, donc ici on multiplie encore par

10000 pour décaler de 4 chiffres :

10000×100x=12342021,2021←-→... (2)

Les parties après la virgule des deux lignes(1)et(2)sont les mêmes, donc si on les soustrait en faisant

2 1 ) alors les parties décimales s"annulent :

10000×100x-100x=12342021-1234

donc 999900x=12340787 donc x=12340787999900

Et donc bien sûrx∈Q.

1.2. p2n"est pas un nombre rationnel

Il existe des nombres qui ne sont pas rationnels, lesirrationnels. Les nombres irrationnels apparaissent

naturellement dans les figures géométriques : par exemple la diagonale d"un carré de côté1est le nombre

irrationnelp2; la circonférence d"un cercle de rayon12estπqui est également un nombre irrationnel. Enfin

e=exp(1)est aussi irrationnel. LES NOMBRES RÉELS1. L"ENSEMBLE DES NOMBRES RATIONNELSQ31p2 •1 2π

Nous allons prouver que

p2 n"est pas un nombre rationnel.

Proposition 2.

p2/∈QDémonstration.Par l"absurde supposons quep2soit un nombre rationnel. Alors il existe des entiersp∈Z

etq∈N∗tels quep2=pq, de plus -ce sera important pour la suite- on suppose quepetqsont premiers

entre eux (c"est-à-dire que la fractionpq est sous une écriture irréductible).

En élevant au carré, l"égalitép2=pqdevient2q2=p2. Cette dernière égalité est une égalité d"entiers.

L"entier de gauche est pair, donc on en déduit quep2est pair; en terme de divisibilité 2 divisep2.

Mais si2divisep2alors2divisep(cela se prouve par facilement l"absurde). Donc il existe un entierp′∈Z

tel quep=2p′.

Repartons de l"égalité2q2=p2et remplaçonsppar2p′. Cela donne2q2=4p′2. Doncq2=2p′2. Maintenant

cela entraîne que 2 diviseq2et comme avant alors 2 diviseq.

Nous avons prouvé que2divise à la foispetq. Cela rentre en contradiction avec le fait quepetqsont

premiers entre eux. Notre hypothèse de départ est donc fausse :p2 n"est pas un nombre rationnel.

Comme ce résultat est important en voici une deuxième démonstration, assez différente, mais toujours par

l"absurde. Autre démonstration.Par l"absurde, supposonsp2=pq , doncqp2=p∈N. Considérons l"ensemble

N=n∈N∗|np2∈N.

Cet ensemble n"est pas vide car on vient de voir queqp2=p∈Ndoncq∈ N. AinsiNest une partie non

vide deN, elle admet donc un plus petit élémentn0=minN.

Posons

n

1=n0p2-n0=n0(p2-1),

il découle de cette dernière égalité et de 1Montrer quep10/∈Q.

On représente souvent les nombres réels sur une " droite numérique » :-3-2-1012345πep2

LES NOMBRES RÉELS2. PROPRIÉTÉS DER4Il est bon de connaître les premières décimales de certains réelsp2≃1,4142...π≃3,14159265...

e≃2,718...

Il est souvent pratique de rajouter les deux extrémités à la droite numérique.Définition 1.

R=R∪{-∞,∞}Mini-exercices.

1. Montrer que la somme de deux rationnels est un rationnel. Montrer que le produit de deux rationnels

est un rationnel. Montrer que l"inverse d"un rationnel non nul est un rationnel. Qu"en est-il pour les

irrationnels? 2. Écrire les nombres suivants sous forme d"une fraction : 0, 1212;0, 1212 ←→...; 78,33456456←→... 3.

Sachant

p2/∈Q, montrer 2-3p2/∈Q, 1-1p2 /∈Q. 4.

NotonsDl"ensemble des nombres de la formea2

naveca∈Zetn∈N. Montrer que13 /∈D. Trouver x∈Dtel que 1234Montrer que p2p3 /∈Q. 6.

Montrer quelog2/∈Q(log2est le logarithme décimal de2: c"est le nombre réel tel que10log2=2).2. Propriétés deR

2.1. Addition et multiplication

Ce sont les propriétés que vous avez toujours pratiquées. Poura,b,c∈Ron a : a+b=b+a a×b=b×a

0+a=a1×a=asia̸=0

a+b=0⇐⇒a=-b ab=1⇐⇒a=1b (a+b)+c=a+(b+c) (a×b)×c=a×(b×c) a×(b+c) =a×b+a×c a×b=0⇐⇒(a=0 oub=0) On résume toutes ces propriétés en disant que :Propriété(R1). (R,+,×)est uncorps commutatif.2.2. Ordre surR

Nous allons voir que les réels sont ordonnés. La notion d"ordre est générale et nous allons définir cette

notion sur un ensemble quelconque. Cependant gardez à l"esprit que pour nousE=RetR=⩽.Définition 2.

SoitEun ensemble.

1. UnerelationRsurEest un sous-ensemble de l"ensemble produitE×E. Pour(x,y)∈E×E, on dit quexest en relation avecyet on notexRypour dire que(x,y)∈ R. LES NOMBRES RÉELS2. PROPRIÉTÉS DER52.Une relation Rest unerelation d"ordresi

Restréflexive: pour toutx∈E,xRx,

Restantisymétrique: pour toutx,y∈E,(xRyetyRx) =⇒x=y,

Resttransitive: pour toutx,y,z∈E,(xRyetyRz) =⇒xRz.Définition 3.Une relation d"ordreRsur un ensembleEesttotalesi pour toutx,y∈Eon axRyouyRx. On dit

aussi que(E,R)est unensemble totalement ordonné.Propriété(R2). La relation⩽surRest une relation d"ordre, et de plus, elle est totale.Nous avons donc : pour toutx∈R,x⩽x, pour toutx,y∈R, six⩽yety⩽xalorsx=y, pour toutx,y,z∈Rsix⩽yety⩽zalorsx⩽z.

Remarque.

Pour(x,y)∈R2on a par définition :

x⩽y⇐⇒y-x∈R+ xLes opérations deRsont compatibles avec la relation d"ordre⩽au sens suivant, pour des réelsa,b,c,d:

(a⩽betc⩽d) =⇒a+c⩽b+d (a⩽betc⩾0) =⇒a×c⩽b×c (a⩽betc⩽0) =⇒a×c⩾b×c. On définit le maximum de deux réelsaetbpar : max(a,b) =( asia⩾b bsib>a.

Exercice 2.

Comment définir max(a,b,c), max(a1,a2,...,an)? Et min(a,b)?

2.3. Propriété d"ArchimèdePropriété(R3, Propriété d"Archimède).

Restarchimédien, c"est-à-dire :

∀x∈R∃n∈Nn>x " Pour tout réel x, il existe un entier naturel n strictement plus grand que x. »

Cette propriété peut sembler évidente, elle est pourtant essentielle puisque elle permet de définir la partie

entière d"un nombre réel :Proposition 3.

Soit x∈R, ilexisteununiqueentier relatif, lapartie entièrenotée E(x), tel que :E(x)⩽x

LES NOMBRES RÉELS2. PROPRIÉTÉS DER6

Exemple 1.

E(2,853) =2,E(π) =3,E(-3,5) =-4.

E(x) =3⇐⇒3⩽x<4.

Remarque.

On note aussiE(x) = [x].

Voici le graphe de la fonction partie entièrex7→E(x):xy 1

01y=E(x)2,853E(2,853) =2Pour la démonstration de la proposition3 il y a deux choses à établir : d"abord qu"un tel entier E(x)existe

et ensuite qu"il est unique.

Démonstration.

Existence.Supposonsx⩾0, par la propriété d"Archimède (PropriétéR3) il existen∈Ntel quen>x.

L"ensembleK=k∈N|k⩽xest donc fini (car pour toutkdansK, on a0⩽kxcarkmax+1/∈K. Donckmax⩽xUnicité.Siketℓsont deux entiers relatifs vérifiantk⩽x

donc par transitiviték< ℓ+1. En échangeant les rôles deℓetk, on a aussiℓ

ℓ-1

Le casx<0 est similaire.Exemple 2.

Encadronsp10 et 1,1

1/12par deux entiers consécutifs.

Nous savons32=9<10donc3=p3

2

42=16>10 donc 4=p4

2>p10. Conclusion : 3 =3.

On procède sur le même principe.112<1,10<212donc en passant à la racine12-ième (c"est-à-dire à

la puissance112 ) on obtient : 1<1,11/12<2 et doncE1,11/12=1.

2.4. Valeur absolue

Pour un nombre réelx, on définit lavaleur absoluedexpar :|x|=( xsix⩾0 -xsix<0Voici le graphe de la fonctionx7→ |x|:

LES NOMBRES RÉELS2. PROPRIÉTÉS DER7xy

1

01y=|x|Proposition 4.

2.px 2=|x|

3.|x y|=|x||y|

4.Inégalité triangulaire|x+y|⩽|x|+|y|5.Seconde inégalité triangulaire|x|-|y|⩽|x-y|Démonstration des inégalités triangulaires.

-|x|⩽x⩽|x|et-|y|⩽y⩽|y|. En additionnant-(|x|+|y|)⩽x+y⩽|x|+|y|,donc|x+y|⩽|x|+|y|.

•Puisquex= (x-y)+y, on a d"après la première inégalité :|x|=(x-y)+y⩽|x-y|+|y|. Donc

|x| - |y|⩽|x-y|, et en intervertissant les rôles dexety, on a aussi|y| - |x|⩽|y-x|. Comme

|y-x|=|x-y|on a donc|x|-|y|⩽|x-y|.

Sur la droite numérique,|x-y|représente la distance entre les réelsxety; en particulier|x|représente la

distance entre les réelsxet 0.0xy|x||x-y||||

De plus on a :

|x-a|Exercice 3.

Soita∈R\{0}etx∈Rtel que|x-a|<|a|. Montrer quex̸=0et ensuite quexest du même signe quea.Mini-exercices.

1. On munit l"ensembleP(R)des parties deRde la relationRdéfinie parARBsiA⊂B. Montrer qu"il s"agit d"une relation d"ordre. Est-elle totale? 2. Soient x,ydeux réels. Montrer que|x|⩾|x+y|-|y|. 3.

Soientx1,...,xndes réels. Montrer que|x1+···+xn|⩽|x1|+···+|xn|. Dans quel cas a-t-on égalité?

4. Soient x,y>0 des réels. ComparerE(x+y)avecE(x)+E(y). ComparerE(x×y)etE(x)×E(y). 5.

Soit x>0 un réel. EncadrerE(x)x

. Quelle est la limite deE(x)x lorsquex→+∞?

LES NOMBRES RÉELS3. DENSITÉ DEQDANSR86.On note{x}=x-E(x)lapartie fractionnairedex, de sorte quex=E(x) +{x}. Représenter les

graphes des fonctionsx7→E(x),x7→ {x},x7→E(x)-{x}.3. Densité deQdansR

3.1. IntervalleDéfinition 4.

Unintervalle deRest un sous-ensembleIdeRvérifiant la propriété :

Par définitionI=∅est un intervalle.

I=Rest aussi un intervalle.Définition 5.

Unintervalle ouvertest un sous-ensemble deRde la forme]a,b[=x∈R|aMême si cela semble évident il faut justifier qu"un intervalle ouvert est un intervalle (!). En effet soient

a′,b′des éléments de]a,b[etx∈Rtel quea′⩽x⩽b′. Alors on aa La notion de voisinage sera utile pour les limites.Définition 6. Soitaun réel,V⊂Run sous-ensemble. On dit queVest unvoisinagedeas"il existe un intervalle ouvertItel quea∈IetI⊂V.[][][] aI |VV

3.2. Densité

Théorème 1.

1.QestdensedansR: tout intervalle ouvert (non vide) deRcontient une infinité de rationnels.

2.R\Qest dense dansR: tout intervalle ouvert (non vide) deRcontient une infinité d"irrationnels.Démonstration.

On commence par remarquer que tout intervalle ouvert non vide deRcontient un intervalle du type]a,b[,a,b∈R. On peut donc supposer queI=]a,b[par la suite.

1.Tout intervalle contient un rationnel.

On commence par montrer l"affirmation :

quotesdbs_dbs14.pdfusesText_20

[PDF] exercices corrigés logarithme népérien terminale s pdf

[PDF] exercices corrigés logique floue gratuit

[PDF] exercices corrigés maintenance industrielle pdf

[PDF] exercices corrigés maintenance informatique

[PDF] exercices corrigés maths 1ere s

[PDF] exercices corrigés maths 1ere s vecteurs

[PDF] exercices corrigés maths prepa bcpst

[PDF] exercices corrigés maths seconde probabilités

[PDF] exercices corrigés maths tronc commun france pdf

[PDF] exercices corrigés matrices et suites

[PDF] exercices corrigés mécanique des solides pdf

[PDF] exercices corrigés mémoire virtuelle

[PDF] exercices corrigés methode mrp pdf

[PDF] exercices corrigés mmc génie civil

[PDF] exercices corrigés modèle logique de données