[PDF] STATISTIQUES Les effectifs correspondants sont les "





Previous PDF Next PDF



Médiane-Quartiles-Etendue Définition : On appelle médiane dune

Définition : On appelle médiane d'une série statistique une valeur notée Med



STATISTIQUES

Les effectifs correspondants sont les "nombres de matchs". I. Médiane et quartiles. 1) L'étendue. L'étendue est la différence entre la plus grande 



Statistiques

2 Médiane quartiles



Mode - Étendue - Médiane Variance - Écart-type Quartiles

Mode - Étendue - Médiane On appelle médiane d'une série statistique tout réel m tel que : ... La définition de la médiane n'est pas figée et en par-.



STATISTIQUES Médiane quartiles et déciles; Diagrammes en boîtes

On appelle écart interquartile la différence Q3 – Q1. Comment déterminer les quartiles Q1 et Q3 d'une série de N valeurs ? on calcule la quantité ¼ de N = 1.



Première S - Boîte à moustaches ou diagramme en boîte

Si on multiplie toutes les valeurs de la série statistique par un même nombre la médiane est multipliée par k. Page 2. 2) Les quartiles ( paramètres de 



Statistiques

b) Calculer l'étendue et préciser le mode de cette série. c) Déterminer la moyenne la médiane et les quartiles. 3) a) Construire un deuxième tableau en 



Statistiques en Scilab

2.4.5 Etendue . Définition 1.1 : Population individu



Médiane quartiles et diagramme en boite On se donne une série

Définition : Pour une série ordonnée la médiane d'une série statistique est la valeur du caractère qui partage cette série en deux groupes de même effectif 



THEME :

Définition : La médiane ( ou valeur médiane ) partage les valeurs d'une série statistique en deux groupes de STATISTIQUES. MEDIANE - QUARTILES - ETENDUE ...

STATISTIQUES

1 sur 5YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frSTATISTIQUES La chapitre s'appuie sur la série du tableau ci-dessous qui présente le nombre de buts par match durant la Coupe du monde de football de 2010 : Nombre de buts 0 1 2 3 4 5 6 7 Nombre de matchs 7 17 13 14 8 6 0 1 Les valeurs du caractère étudié sont les "nombres de buts". Les effectifs correspondants sont les "nombres de matchs". I. Médiane et quartiles 1) L'étendue L'étendue est la différence entre la plus grande valeur et la plus petite valeur. Exemple : Pour la série étudiée dans le chapitre, l'étendue est égale à 7 - 0 = 7 buts. 2) Médiane Pour obtenir la médiane d'une série, on range les valeurs de la série dans l'ordre croissant. La médiane est la valeur qui partage la série en deux populations d'effectif égal. Méthode : Déterminer une médiane Vidéo https://youtu.be/g1OCTw--VYQ Pour la série étudiée dans le chapitre, calculer la médiane. L'effectif total est égal à 66. La médiane se trouve donc entre la 33e et 34e valeur de la série. On écrit les valeurs de la série dans l'ordre croissant : 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 ... # La 33e et la 34e valeur sont égales à 2. La médiane est donc également égale à 2.

2 sur 5YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frOn en déduit que durant la Coupe du monde 2010, il y a eu autant de matchs dont le nombre de buts était supérieur à 2 que de matchs dont le nombre de buts était inférieur à 2. 3) Quartiles Le premier quartile Q1 est la plus petite valeur de la série telle qu'au moins 25% des valeurs sont inférieures ou égales à Q1. Le troisième quartile Q3 est la plus petite valeur de la série telle qu'au moins 75% des valeurs sont inférieures ou égales à Q3. Méthode : Déterminer les quartiles Vidéo https://youtu.be/IjsDK0ODwlw Pour la série étudiée dans le chapitre, calculer les quartiles. Pour la série étudiée dans le chapitre, l'effectif total est égal à 66. Le premier quartile Q1 est valeur 17e valeur. En effet,

1 4

×66=16,5→17

. Donc Q1 = 1. Le troisième quartile Q3 est valeur 50e valeur. En effet, 3 4

×66=49,5→50

. Donc Q3 = 3. 4) Ecart interquartile Définition : L'écart interquartile d'une série statistique de premier quartile Q1 et de troisième quartile Q3 est égal à la différence Q3 - Q1. Exemple : Pour la série étudiée dans le chapitre, l'écart interquartile est : Q3 - Q1 = 3 - 1 = 2. Remarque : L'écart interquartile d'une série mesure la dispersion autour de la médiane. Il contient au moins 50% des valeurs de la série. 5) Diagramme en boîte Vidéo https://youtu.be/la7c0Yf8VyM

3 sur 5YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr Ce type diagramme porte également le nom de boîte à moustaches ou diagramme de Tukey. John Wilder Tukey (1915 - 2000) était un statisticien américain. Exemple : Pour la série étudiée dans le chapitre : II. Moyenne et écart-type 1) Moyenne Exemple : La moyenne de buts par match est égale à :

x=

7+17+13+14+8+6+1

154
66
≈2,3

2) Écart-type L'écart-type exprime la dispersion des valeurs d'une série statistique autour de sa moyenne. Plus il est grand, plus les valeurs sont dispersées autour de la moyenne et moins la moyenne représente de façon significative la série. L'écart-type possède la même unité que les valeurs de la série.

4 sur 5YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr Méthode : Déterminer les caractéristiques statistiques à l'aide d'une calculatrice Vidéos n°6 à 13 de la Playlist : https://www.youtube.com/playlist?list=PLVUDmbpupCariueLJZJ78cq4tX1OVCHIJ 1) Déterminer la moyenne et l'écart-type de la série statistique étudiée dans ce chapitre. 2) Tracer le diagramme en boîte. 1) On saisit les données du tableau dans deux listes de la calculatrice : TI-83 : Touche " stats » puis " 1:Edit ...» Casio 35+ : Menu " STAT » On obtient : L1 L2 L3 L4 0 1 2 3 4 5 6 7 7 17 13 14 8 6 0 1 On indique que les valeurs du caractère sont stockées dans la liste 1 et les effectifs correspondants dans la liste 2 : TI-83 : Touche " stats » puis " CALC » et " Stats 1-Var ». Stats 1-Var L1,L2 Casio 35+ : " CALC » (F2) puis " SET » (F6) : 1Var XList :List1 1Var Freq :List2 Puis touches " EXIT » et " 1VAR » (F1). On obtient : Stats 1-Var

x

=2.3333333 Σx=154 Σx2=522 Sx=1.5819495 σx=1.5699193 n=66 On retrouve donc la moyenne x≈2,3

. L'écart-type, noté σ , est égal à : σ≈1,57 . L'écart-type est donc d'environ 1,57 but.

5 sur 5YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr2) Il est possible d'afficher également le diagramme en boîte : TI-83 : " 2nde » " graph stats » puis choisir " 1 : Graph1 ». Et touche " graphe ». Casio 35+ : " GRPH » (F1) puis " SET » (F6) : StatGraph1 Graph Type :MedBox XList :List1 Frequency :List2 Puis touche " EXIT » et " GPH1 ». On obtient : Horsducadredelaclasse,aucunereproduction,mêmepartielle,autresquecellesprévuesàl'articleL122-5ducodedelapropriétéintellectuelle,nepeutêtrefaitedecesitesansl'autorisationexpressedel'auteur.www.maths-et-tiques.fr/index.php/mentions-legales

quotesdbs_dbs29.pdfusesText_35
[PDF] 1 TERRE DE NOS AÏEUX écrit et composé par Alex Casimir

[PDF] Éthanol - INRS

[PDF] corrigé - Olympiades de chimie

[PDF] UNIT PLAN - Zemali Salem

[PDF] Philopsis Notes de Cours - Aristote Ethique X Cournarie

[PDF] Philopsis Notes de Cours - Aristote Ethique X Cournarie

[PDF] L 'entreprise et l 'éthique - Oeconomianet

[PDF] Ethique et responsabilité du financier d 'entreprise - Université de

[PDF] « ETHNOPHILOSOPHIE » : LE MOT ET LA CHOSE

[PDF] La cause des chiens - Psychaanalyse

[PDF] TP dosage conductimétrique Destop et correction - physique chimie

[PDF] Réglementations internationales sur les piles au lithium - UPScom

[PDF] Etirements activo dynamiques

[PDF] Etirements activo passifs aussi appelé (PNF):

[PDF] Méthodes d 'étirements et kinésithérapie