[PDF] Thermochemistry The total quantity of matter





Previous PDF Next PDF



SVT-SPC-ACT 2-RESSOURCES protocole oxydation du glucose

réactifs et les produits : le glucose C6H12O6 réagit avec le dioxygène O2 pour former du dioxyde de carbone CO2 et de l'eau H2O. Une équation chimique 



équations bilans

énergie de mouvement par une réaction chimique la combustion du glucose



NZQA - NCEA Level 1 Chemistry (90932) 2018

of CO and / or C (soot). • Links complete and incomplete combustion to the amount of oxygen and products produced. AND. One balanced symbol equation.



How many water molecules produce during the complete oxidation

water involvement in the aconitase reaction can be Complete Oxidation of Glucose? ... Sum of all reactions for combustion of glucose.



NZQA - NCEA Level 1 Chemistry (90932) 2021

oxygen gas that is needed from the atmosphere for complete combustion to occur Glucose is converted ... (ii) Complete combustion of ethanol equations:.



Level 2 Chemistry (91164) 2015

23/11/2015 TOTAL. Level 2 Chemistry 2015 ... O(?)



Level 1 Chemistry (90932) 2012

22/11/2012 (d) Identify and evaluate ONE effect that a product of the complete combustion reaction for ethanol would have on the environment.



Stoichiometry of the water molecules in glucose oxidation revisited

from glucose combustion in a calorimeter (eqn 2) by glucose molecule we can rewrite the overall reaction (eqn. 1) of the complete biological oxidation ...



Thermochemistry

The total quantity of matter and energy in the universe is fixed. For example the combustion reaction that occurs when using an oxyacetylene torch.



Chemistry 30 2017 Released Diploma Examination Items

Fermentation of fruits and grains converts glucose to ethanol and carbon dioxide as Ethyne



Energie des combustions - Correction - AlloSchool

a Ecrire les équations des réactions de combustion complète du glucose et de la butyrine solide C6H12O6 ( æ)+6 O 6 (g) ?6 CO (g)+6 H 6O (g) 2 C15H26O6 ( æ)+37 O 6 (g) ?30 CO (g)+26 H 6O (g) b Calculer les masses molaires du glucose et de ma butyrine



Chapter 2 Thermodynamics of Combustion - NRC

2: (2 11) Note that on the reactant side there are 2·(1+3 76) or 9 52 mol of air and its molecular mass is 28 96 kg/kmol In this text the reactions are balanced using 1 mol of fuel This is done here to simplify the calculations of the heat of reaction and ?ame temperature later in the chapter

What is the equation for combustion of glucose?

The equation for the combustion of glucose is: C6H12O6 (s) + 6O2 (g) -->6CO2 (g) + 6H2O (g). How many grams of H2O will be produced when 8.064g of glucose is burned? What is the combustion reaction of sucrose? Is combustion exothermic or endothermic, and why?

What is the balanced chemical equation for glucose?

Explanation: The complete combustion of glucose will give carbon dioxide and water, therefore, the balanced chemical equation can be written as: C6H 12O6(s) +6O2(g) ? 6CO2(g) + 6H 2O(g)

What is the total heat released during the combustion of glucose?

O(l) A 2.50 g sample of glucose and an excess of O 2 (g) were placed in a calorimeter. After the reaction was initiated and proceeded to completion, the total heat released by the reaction was calculated to be 39.0 kJ. (b) Calculate the value of ?H°, in kJ mol?1, for the combustion of glucose. 2.50 g ×612 6 1 mol C H O 180.16 g C H O 612 6

What is the formula for combustion of sucrose?

Combustion of sucrose is given by the chemical equation, C/b> + 12 O2 ——> 12CO2 + 11 H2O… What is true for combustion of sucrose?

Thermochemistry ;]UfjYh 1

L]YhceW]Yc_ijho>_[khY 1*-cyvqv°t n znβpu urnq nyâ°t n Δâγtu αγΔsnpr v°vβv2nβrα n pâzoγαβvâ° Δrnpβvâ° βunβ éΔâqγprα r°rΔt' v° 2βur

sâΔz âs urnβ n°q yvtuβ3 -pΔrqvβE zâqvsvpnβvâ° 2âs σâΔx o' VnαVyâ Sy'rα.

;]UfjYh Gkjb_dY :36 O°rΔt' Lnαvpα :37 MnyâΔvzrβΔ' :38 O°βunyé'

AdjheXkWj_ed

Pwtµxrp° ΦtprαxéèΨ3 Ψβrw pΨ αwéΨt αwpα érrβΦ θwtè νéβ °xvwα p µpαrw3 xèγé°γt rwpèvtΨ xè tètΦvν pΨ θt°° pΨ µpααtΦ5

eérxtαxtΨ pα p°° °tγt°Ψ éu stγt°éħµtèα réβ°s èéα uβèrαxéè θxαwéβα αwt tètΦvν Φt°tpΨts qν rwtµxrp° ΦtprαxéèΨ5 Vè ;8:;3

pqéβα DA- éu ge tètΦvν réèΨβµħαxéè rpµt uΦéµ αwt réµqβΨαxéè éu ħtαΦé°tβµ ħΦésβrαΨ3 rép°3 θéés3 pès vpΦqpvt5 it

βΨt αwxΨ tètΦvν αé ħΦésβrt t°trαΦxrxαν /

uéΦ xèsβΨαΦxp° ħΦésβrαxéè /;:-0G pès αé wtpα pès ħéθtΦ éβΦ wéµtΨ pès qβΨxètΨΨtΨ /:8-05

m:niwx°t αwtΨt réµqβΨαxéè

ΦtprαxéèΨ wt°ħ βΨ µttα éβΦ tΨΨtèαxp° tètΦvν èttsΨ3 αwtν pΦt p°Ψé Φtrévèxπts qν αwt µpyéΦxαν éu αwt Ψrxtèαxuxr réµµβèxαν

pΨ p µpyéΦ réèαΦxqβαéΦ αé v°éqp° r°xµpαt rwpèvt54

gΨtuβ° uéΦµΨ éu tètΦvν pΦt p°Ψé pγpx°pq°t uΦéµ p γpΦxtαν éu rwtµxrp° ΦtprαxéèΨ éαwtΦ αwpè réµqβΨαxéè5 SéΦ tλpµħ°t3

αwt tètΦvν ħΦésβrts qν αwt qpααtΦxtΨ xè p rt°° ħwéèt3 rpΦ3 éΦ u°pΨw°xvwα ΦtΨβ°αΨ uΦéµ rwtµxrp° ΦtprαxéèΨ5 fwxΨ rwpħαtΦ

xèαΦésβrtΨ µpèν éu αwt qpΨxr xstpΨ ètrtΨΨpΦν αé tλħ°éΦt αwt Φt°pαxéèΨwxħΨ qtαθttè rwtµxrp° rwpèvtΨ pès tètΦvν3 θxαw

p uérβΨ éè αwtΦµp° tètΦvν552 a[ Mxo·q- Qxpy·wkâsyx InwsxsÅâ·kâsyx0DdX]Pdk 9_TdVk 7a_eg]bfXa_ Qk GagdRT P_S GTRfad% +)*+3

wααħF66θθθ5txp5véγ6αéαp°tètΦvν6spαp6µéèαw°ν6ħsu6u°éθ6rΨΨo;8:;otètΦvν5ħsu5 Qpαp stΦxγts uΦéµ ge RètΦvν

VèuéΦµpαxéè NsµxèxΨαΦpαxéè3Aa_fW[k 9_TdVk FThXTi/WpèβpΦν ;8:=05MunéβrΔ : durΔzâpurzvαβΔ'786

1*- =dYh[o :Ui_Wi

MV γvs sâr ét γvwβ βsqγwéâ1 Véπ -wzz ps opzs2 γéE

tOstwâs sâsαuV1 rwβγwâuπwβv γVøsβ ét sâsαuV1 oâr rsβqαwps γvs âoγπαs ét sâsαuV qvoâusβ γvoγ oqqé°øoâV

qvs°wqoz oâr øvVβwqoz qvoâusβ

tOwβγwâuπwβv γvs αszoγsr øαéøsαγwsβ ét vsoγ1 γvsα°oz 2sâsαuV1 oâr γs°øsαoγπαs

tOstwâs oâr rwβγwâuπwβv βøsqwtwq vsoγ oâr vsoγ qoøoq2wγV1 oâr rsβqαwps γvs øvVβwqoz w°øzwqoγwéâβ ét péγv

tasαtéα° qozqπzoγwéâβ wâσézσwâu vsoγ1 βøsqwtwq vsoγ1 2oâr γs°øsαoγπαs qvoâus

Nvs°wqoz qvoâusβ oâr γvswα oqqé°øoâVwâu qvoâusβ wâ sâsαuV oαs w°øéαγoâγ øoαγβ ét éπα sσsαVroV -éαzr -

>_[khY

1*..3 evs °oqαéâπγαwsâγβ wâ téér -øαéγswâβ1 toγβ1 oâr qoαpévVrαoγsβ. πârsαué °sγopézwq αsoqγwéâβ γvoγ øαéσwrs γvs

sâsαuV γé yssø éπα pérwsβ tπâqγwéâwâu3 hs pπαâ o σoαwsγV ét tπszβ -uoβézwâs1 âoγπαoz uoβ1 qéoz. γé øαérπqs sâsαuV

téα γαoâβøéαγoγwéâ1 vsoγwâu1 oâr γvs usâsαoγwéâ ét szsqγαwqwγV3 Târπβγαwoz qvs°wqoz αsoqγwéâβ πβs sâéα°éπβ o°éπâγβ ét

sâsαuV γé øαérπqs αo- °oγsαwozβ -βπqv oβ wαéâ oâr ozπ°wâπ°.3 PâsαuV wβ γvsâ πβsr γé °oâπtoqγπαs γvéβs αo- °oγsαwozβ

wâγé πβstπz øαérπqγβ1 βπqv oβ qoαβ1 βyVβqαoøsαβ1 2oâr pαwrusβ3>_[khY 1*.evs sµsΠuλ wµβèzβsr wµ qvs°wqoz qvoµusΦ wΦ w°éèΠΨoµ4Ψ Ψè èαΠ rowzλ zwβsΦF /o0 M qvssΦspαΠusΠ tè4Π zαµqv

éΠèβwrsΦ Ψvs sµsΠuλ λèα µssr Ψè usΨ ΨvΠèαuv Ψvs 4ΠsΦΨ èt Ψvs roλG /p0 Ψvs qè°pαΦΨwèµ èt uoΦè4zwµs éΠèβwrsΦ Ψvs sµsΠuλ

ΨvoΨ °èβsΦ λèαΠ qoΠ /oµr λèα0 psΨγssµ vè°s3 γ4èΠy3 oµr ΦqvèèzG oµr /q0 qèys3 o éΠèqsΦΦsr 4tèΠ° èt qèoz3 éΠèβwrsΦ Ψvs

sµsΠuλ µssrsr Ψè qèµβsΠΨ wΠèµ èΠs wµΨè wΠèµ3 γv4wqv wΦ sΦΦsµΨwoz tèΠ °oywµu °oµλ èt Ψvs éΠèrαqΨΦ4 γs αΦs rowzλ5 /qΠsrwΨ oF

°èrwtwqoΨwèµ èt γèΠy pλ rawµy dvsΠpsΨ avèΨèuΠoévλs64RzwqyΠG qΠsrwΨ pF °èrwtwqoΨwèµ èt γèΠy pλ Vs4ttsΠλ eαΠµsΠ0

Zσsα D5+ ét γvs sâsαuV -s πβs qé°sβ éαwuwâozzV tαé° γvs βπâ3 PσsαV roV1 γvs βπâ øαéσwrsβ γvs soαγv -wγv oz°éβγ

651555 γw°sβ γvs o°éπâγ ét sâsαuV âsqsββoαV γé °ssγ ozz ét γvs -éαzrvβ sâsαuV âssrβ téα γvoγ roV3 Zπα qvozzsâus wβ γé

twâr -oVβ γé qéâσsαγ oâr βγéαs wâqé°wâu βézoα sâsαuV βé γvoγ wγ qoâ ps πβsr wâ αsoqγwéâβ éα qvs°wqoz øαéqsββsβ γvoγ oαs

péγv qéâσsâwsâγ oâr âéâøézzπγwâu3 azoâγβ oâr °oâV poqγsαwo qoøγπαs βézoα sâsαuV γvαéπuv øvéγéβVâγvsβwβ3 hs αszsoβs

γvs sâsαuV βγéαsr wâ øzoâγβ -vsâ -s pπαâ -éér éα øzoâγ øαérπqγβ βπqv oβ sγvoâéz3 hs ozβé πβs γvwβ sâsαuV γé tπsz éπα

pérwsβ pV soγwâu téér γvoγ qé°sβ rwαsqγzV tαé° øzoâγβ éα tαé° oâw°ozβ γvoγ uéγ γvswα sâsαuV pV soγwâu øzoâγβ3 Mπαâwâu

qéoz oâr øsγαézsπ° ozβé αszsoβsβ βγéαsr βézoα sâsαuVE evsβs tπszβ oαs téββwzwWsr øzoâγ oâr oâw°oz 2°oγγsα3

evwβ qvoøγsα -wzz wâγαérπqs γvs poβwq wrsoβ ét oâ w°øéαγoâγ oαso ét βqwsâqs qéâqsαâsr -wγv γvs o°éπâγ ét vsoγ opβéαpsr

éα αszsoβsr rπαwâu qvs°wqoz oâr øvVβwqoz qvoâusβuoâ oαso qozzsrgXUe_bSXU_Yfgel3 evs qéâqsøγβ wâγαérπqsr wâ

γvwβ qvoøγsα oαs -wrszV πβsr wâ oz°éβγ ozz βqwsâγwtwq oâr γsqvâwqoz twszrβ3 Qéér βqwsâγwβγβ πβs γvs° γé rsγsα°wâs γvs

sâsαuV qéâγsâγ ét téérβ3 Mwézéuwβγβ βγπrV γvs sâsαusγwqβ ét zwσwâu éαuoâwβ°β1 βπqv oβ γvs °sγopézwq qé°pπβγwéâ ét

βπuoα wâγé qoαpéâ rwé'wrs oâr -oγsα3 evs éwz1 uoβ1 oâr γαoâβøéαγoγwéâ wârπβγαwsβ1 αsâs-opzs sâsαuV øαéσwrsαβ1 oâr °oâV

éγvsαβ sârsoσéα γé twâr psγγsα °sγvérβ γé øαérπqs sâsαuV téα éπα qé°°sαqwoz oâr øsαβéâoz âssrβ3 Pâuwâssαβ βγαwσs

γé w°øαéσs sâsαuV sttwqwsâqV1 twâr psγγsα -oVβ γé vsoγ oâr qééz éπα vé°sβ1 αstαwusαoγs éπα téér oâr rαwâyβ1 oâr °ssγ

γvs sâsαuV oâr qéézwâu âssrβ ét qé°øπγsαβ oâr szsqγαéâwqβ1 o°éâu éγvsα oøøzwqoγwéâβ3 fârsαβγoârwâu γvsα°éqvs°wqoz;<;OvoéΨsΠ A evsΠ°èqvs°wΦΨΠλ[qr· lxwÅnwÅ r· iøiruikun ox° o°nn iÅ qÅÅyB3316qèµΨsµΨ6qèz::CB86:5E

principles is essential for chemists, physicists, biologists, geologists, every type of engineer, and just about anyone

who studies or does any kind of science.

Hrjvlé

Fofshzcan be defined as the capacity to supply heat or do work. One type ofxpsl )C+is the process of causing

matter to move against an opposing force. For example, we do work when we inflate a bicycle tire - we move matter

(the air in the pump) against the opposing for-ce of the air already in the tire.

Like matter, energy comes in different types. One scheme classifies energy into two types:qpufoujbm fofshz, the

energy an object has because of its relative position, composition, or condition, andljofujd fofshz, the energy that

an object possesses because of its motion. Water at the top of a waterfall or dam has potential energy because of its

position; when it flows downward through generators, it has kinetic energy that can be used to do work and produce

electricity in a hydroelectric plant ( Inlyvj 6/4). A battery has potential energy because the chemicals within it can

produce electricity that can do work.Inlyvj 6/4(a) Water that is higher in elevation, for example, -at the top of Victoria Falls, has a higher potential

energy than water at a lower elevation. As th-e water falls, some of its potential energy is -converted into kinetic

energy. (b) If the water flows through generators -at the bottom of a dam, such as the Hoover -Dam shown here, its

kinetic energy is converted into electrical energy. (credit a: modification of work by Steve -Jurvetson; credit b:

modification of work by "curimedia"/Wikimedia commons)-

Energy can be converted from one form into another, but all of the energy present before a change occurs always

exists in some form after the change is completed. This observation is expressed in the law of conservation of energy:

during a chemical or physical change, energy can be neither created nor destroyed, although it can be changed in

form. (This is also one version of the first- law of thermodynamics, as you will learn later-.)

When one substance is converted into another, there is always an associated conversion of one form of energy into

another. Heat is usually released or absorbed, but sometimes the conversion involves light, electrical energy, or

some other form of energy. For example, chemical energy (a type of potential energy) is stored in the molecules

that compose gasoline. When gasoline is combusted within the cylinders of a car's engine, the rapidly expanding

gaseous products of this chemical reaction generate mechanical energy (a type of kinetic energy) when they move the

cylinders' pistons.

According to the law of conservation of matter (seen in an earlier chapter), there is no detectable change in the

total amount of matter during a chemical change. When chemical reactions occur, the energy changes are relatively

modest and the mass changes are too small to measure, so the laws of conservation of matter and energy hold well.

However, in nuclear reactions, the energy changes are much larger (by factors of a million or so), the mass changesChapter 5 Thermochemistry233

are measurable, and matter-energy conversions are significant. This will be examined in more detail in a later chapter

on nuclear chemistry. To encompass both chemical and nuclear changes, we combine these laws into one statement:

The total quantity of matter and energy in the universe is fixed.

Wmjvqfp Hrjvlé- Wjqtjvfxyvj- fri Kjfx

Vifsnbm fofshzis kinetic energy associated with the random motion of atoms and molecules.Vfnqfsbuvsfis a

quantitative measure of "hot" or "cold." When the atoms and molecules in an object are moving or vibrating quickly,

they have a higher average kinetic energy (KE), and we say that the object is "hot." When the atoms and molecules are

moving slowly, they have lower KE, and we say that the object is "cold" (

Inlyvj 6/5). Assuming that no chemical

reaction or phase change (such as melting or vaporizing) occurs, increasing the amount of thermal energy in a sample

of matter will cause its temperature to increase. And, assuming that no chemical reaction or phase change (such

as condensation or freezing) occurs, decreasing the amount of thermal energy in a sample of matter will cause its

temperature to decrease.Inlyvj 6/5(a) The molecules in a sample of hot water -move more rapidly than (b) those in a sample -of cold water.

Click on thisnrxjvfhxnzj wnqypfxnsr *mxxtA00stjrwxfâhsppjlj/svl02p0

27SKHWxjqtIa+to view the effects of temperature on molecular motion.

Most substances expand as their temperature increases and contract as their temperature decreases. This property can

be used to measure temperature changes, as shown inInlyvj 6/6. The operation of many thermometers depends on

the expansion and contraction of substances in resp-onse to temperature changes.Onro xs Ojfvrnrl234Chapter 5 Thermochemistry[qr· lxwÅnwÅ r· iøiruikun ox° o°nn iÅ qÅÅyB331/content/col11760/1.9

>_[khY 1*1-n. S° n° nypâuây âΔ zrΔpγΔ' βurΔzâzrβrΔ1 βur yvøγvq -q'rq Δrq sâΔ πvαvovyvβ'. r-én°qα 2σur° urnβrq n°q

pâ°βΔnpβα σur° pââyrq1 zγpu zâΔr αâ βun° βur ty2nαα βγor βunβ pâ°βnv°α βur yvøγvq3 -o. S° 2n ovzrβnyyvp βurΔzâzrβrΔ1 βσâ

qvssrΔr°β zrβnyα -αγpu nα oΔnαα n°q αβrry. sâΔz n2 βσâ2yn'rΔrq αβΔvé3 gur° urnβrq âΔ pââyrq1 â°r2 âs βur zrβnyα -oΔnαα.

r-én°qα âΔ pâ°βΔnpβα zâΔr βun° βur âβurΔ zrβny -2αβrry.1 pnγαv°t βur αβΔvé βâ pâvy âΔ γ°pâvy3 2Lâβu β'érα âs βurΔzâzrβrΔα

unπr n pnyvoΔnβrq αpnyr βunβ v°qvpnβrα βur βrzérΔnβ2γΔr3 -pΔrqvβ nE zâqvsvpnβvâ° âs σâΔx o' rqσα2βγpxrs4PyvpxΔ.

dur sâyyâσv°tXYcedijhUj_ed $]jjf6++efYdijUnWebbY[Y*eh[+b+-2-:_cYjUbb_W%nyyâσα

â°r βâ πvrσ βur rssrpβα âs urnβv°t n°q pââyv°t n pâvyrq ovzrβnyyvp 2αβΔvé3

Ifbu )

+jt uif usbotgfs pg uifsnbm fofshz cfuxffo uxp cpejft bu ejggfsfou ufnqfsbuvsft. Ifbu gmpx (b sfevoebou ufsn,

cvu pof dpnnpomz vtfe) jodsfbtft uif uifsnbm fofshz pg pof cpez boe efdsfbtft uif uifsnbm fofshz pg uif puifs.

Tvqqptf xf jojujbmmz ibwf b ijhi ufnqfsbuvsf (boe ijhi uifsnbm fofshz) tvctubodf (I) boe b mpx ufnqfsbuvsf (boe mpx

uifsnbm fofshz) tvctubodf (M). Uif bupnt boe npmfdvmft jo I ibwf b ijhifs bwfsbhf LF uibo uiptf jo M. Jg xf qmbdf

tvctubodf I jo dpoubdu xjui tvctubodf M, uif uifsnbm fofshz xjmm gmpx tqpoubofpvtmz gspn tvctubodf I up tvctubodf M.

Uif ufnqfsbuvsf pg tvctubodf I xjmm efdsfbtf, bt xjmm uif bwfsbhf LF pg jut npmfdvmft; uif ufnqfsbuvsf pg tvctubodf

M xjmm jodsfbtf, bmpoh xjui uif bwfsbhf LF pg jut npmfdvmft. Ifbu gmpx xjmm dpoujovf voujm uif uxp tvctubodft bsf bu

uif tbnf ufnqfsbuvsf (>_[khY 1*2).D_da je DYUhd_d[ MunéβrΔ : durΔzâpurzvαβΔ'78:

>_[khY 1*2-n. cγoαβn°prα R n°q V nΔr v°vβvnyy' nβ qvssrΔr°β βrzérΔnβγΔrα1 n°q βurvΔ nβâzα unπr qvssrΔr°β nπrΔntr

xv°rβvp r°rΔtvrα3 -o. gur° βur' nΔr éγβ v°βâ 2pâ°βnpβ σvβu rnpu âβurΔ1 pâyyvαvâ°α orβσrr° βur zâyrpγyrα Δrαγyβ v° βur

βΔn°αsrΔ âs xv°rβvp -βurΔzny. r°rΔt' sΔâz βur uâβ2βrΔ βâ βur pââyrΔ znββrΔ3 -p. dur βσâ âowrpβα Δrnpu rβurΔzny

røγvyvoΔvγzs σur° oâβu αγoαβn°prα nΔr nβ βur αnzr 2βrzérΔnβγΔr1 n°q βurvΔ zâyrpγyrα unπr βur αnzr nπr2Δntr xv°rβvp

r°rΔt'3 Myvpx â° βurH]=L i_ckbUj_ed $]jjf6++efYdijUnWebbY[Y*eh[+b+--2H@=LYdYh[o%βâ

r-éyâΔr r°rΔt' sâΔzα n°q pun°trα3 fvαvβ βur O°rΔt' c'αβrzα βno βâ pΔrnβr

pâzov°nβvâ°α âs r°rΔt' αâγΔprα1 βΔn°αsâΔznβvâ° zrβuâqα12 n°q âγβéγβα3 Myvpx â°

O°rΔt' c'zoâyα βâ πvαγnyvVr βur βΔn°αsrΔ âs r°rΔt'3

[pααtΦ βèstΦvéxèv rwtµxrp° ΦtprαxéèΨ pès ħwνΨxrp° rwpèvtΨ rpè Φt°tpΨt éΦ pqΨéΦq wtpα5 N rwpèvt αwpα Φt°tpΨtΨ wtpα xΨ

rp°°ts pèUkbgXUe_YS cebSUff5 SéΦ tλpµħ°t3 αwt réµqβΨαxéè Φtprαxéè αwpα érrβΦΨ θwtè βΨxèv pè éλνprtαν°tèt αéΦrw

xΨ pè tλéαwtΦµxr ħΦértΨΨuαwxΨ ħΦértΨΨ p°Ψé Φt°tpΨtΨ tètΦvν xè αwt uéΦµ éu °xvwα pΨ tγxstèrts qν αwt αéΦrwvΨ u°pµt

>_[khY 1*305 N Φtprαxéè éΦ rwpèvt αwpα pqΨéΦqΨ wtpα xΨ pèUaTbgXUe_YS cebSUff5 N ré°s ħprz βΨts αé αΦtpα µβΨr°t

ΨαΦpxèΨ ħΦéγxstΨ pè tλpµħ°t éu pè tèséαwtΦµxr ħΦértΨΨ5 iwtè αwt ΨβqΨαpèrtΨ xè αwt ré°s ħprz /θpαtΦ pès p Ψp°α °xzt

pµµéèxβµ èxαΦpαt0 pΦt qΦéβvwα αévtαwtΦ3 αwt ΦtΨβ°αxèv ħΦértΨΨ pqΨéΦqΨ wtpα3 °tpsxèv αé 4αwt ΨtèΨpαxéè éu ré°s5D_da je DYUhd_d[

78AMunéβrΔ : durΔzâpurzvαβΔ'[qr· lxwÅnwÅ r· iøiruikun ox° o°nn iÅ qÅÅyB3314pâ°βr°β4pây66BA5463D

>_[khY 1*3-n. K° â-'nprβ'yr°r βâΔpu éΔâqγprα urnβ o' βur 2pâzoγαβvâ° âs nprβ'yr°r v° â-'tr°3 dur r°rΔt' Δr2yrnαrq

o' βuvα r-âβurΔzvp Δrnpβvâ° urnβα n°q βur° zryβα 2βur zrβny orv°t pγβ3 dur αénΔxα nΔr βv°' ovβα2 âs βur zâyβr° zrβny

sy'v°t nσn'3 -o. K pâyq énpx γαrα n° r°qâβurΔzvp éΔâpr2αα βâ pΔrnβr βur αr°αnβvâ° âs pâyq3 -pΔrqvβ 2nE zâqvsvpnβvâ° âs

σâΔx o' rcxnβrovxrΔs4gvxvzrqvn pâzzâ°α.

UxΨαéΦxrp°°ν3 tètΦvν θpΨ µtpΨβΦts xè βèxαΨ éuSQ]beYUf "SQ]$5 N rp°éΦxt xΨ αwt pµéβèα éu tètΦvν ΦtΠβxΦts αé ΦpxΨt éèt

vΦpµ éu θpαtΦ qν : stvΦtt P /: zt°γxè05 UéθtγtΦ3 αwxΨ Πβpèαxαν stħtèsΨ éè αwt pαµéΨħwtΦxr ħΦtΨΨβΦt pès αwt ΨαpΦαxèv

αtµħtΦpαβΦt éu αwt θpαtΦ5 fwt tpΨt éu µtpΨβΦtµtèα éu tètΦvν rwpèvtΨ xè rp°éΦxtΨ wpΨ µtpèα αwpα αwt rp°éΦxt xΨ Ψαx°°

uΦtΠβtèα°ν βΨts5 fwt Pp°éΦxt /θxαw p rpħxαp° P03 éΦ °pΦvt rp°éΦxt3 réµµéè°ν βΨts xè Πβpèαxuνxèv uéés tètΦvν réèαtèα3

xΨ p zx°érp°éΦxt5 fwt eV βèxα éu wtpα3 θéΦz3 pès tètΦvν xΨ αwt yéβ°t5 NZbh]U "?$xΨ stuxèts pΨ αwt pµéβèα éu tètΦvν

βΨts θwtè p uéΦrt éu : ètθαéè µéγtΨ pè éqytrα : µtαtΦ5 Vα xΨ èpµts xè wéèéΦ éu αwt Rèv°xΨw ħwνΨxrxΨα WpµtΨ bΦtΨréαα

Wéβ°t5 aèt yéβ°t xΨ tΠβxγp°tèα αé : zv µ

;6Ψ;3 θwxrw xΨ p°Ψé rp°°ts : ètθαéètµtαtΦ5 N zx°éyéβ°t /zW0 xΨ :888 yéβ°tΨ5 fé

ΨαpèspΦsxπt xαΨ stuxèxαxéè3 : rp°éΦxt wpΨ qttè 4Ψtα αé tΠβp° =5:D= yéβ°tΨ5

it èéθ xèαΦésβrt αθé réèrtħαΨ βΨtuβ° xè stΨrΦxqxèv wtpα u°éθ pès αtµħtΦpαβΦt rwpèvt5 fwtXUQg SQcQSYgl "!$éu p

qésν éu µpααtΦ xΨ αwt Πβpèαxαν éu wtpα / c

0 xα pqΨéΦqΨ éΦ Φt°tpΨtΨ θwtè xα tλħtΦxtèrtΨ p αtµħtΦpαβΦt rwpèvt /h

H

0 éu :

stvΦtt Pt°ΨxβΨ /éΦ tΠβxγp°tèα°ν3 : zt°γxè0F

ɔ(B>Q @>M>@FQV FP ABQBOJFKBA ?V ?LQE QEB QVMB >KA >JLRKQ LC PR?PQ>K@B QE>Q >?PLO?P LO OBIB>PBP EB>Q )Q FP QEBOBCLOB >KBUQBKPFSBMOLMBOQVuFQPS>IRBFPMOLMLOQFLK>IQLQEB>JLRKQLCQEBPR?PQ>K@B

&LO BU>JMIB @LKPFABO QEB EB>Q @>M>@FQFBP LC QTL @>PQ FOLK COVFKD M>KP 4EB EB>Q @>M>@FQV LC QEB I>ODB M>K FP CFSB QFJBP

DOB>QBO QE>K QE>Q LC QEB PJ>II M>K ?B@>RPB >IQELRDE ?LQE >OB J>AB LC QEB P>JB J>QBOF>I QEB J>PP LC QEB I>ODB M>K

FP CFSB QFJBP DOB>QBO QE>K QEB J>PP LC QEB PJ>II M>K -LOB J>PP JB>KP JLOB >QLJP >OB MOBPBKQ FK QEB I>ODBO M>K PL

FQ Q>HBP JLOB BKBODV QL J>HB >II LC QELPB >QLJP SF?O>QB C>PQBO 4EB EB>Q @>M>@FQV LC QEB PJ>II @>PQ FOLK COVFKD M>K FP

+p$

4EB I>ODBO @>PQ FOLK COVFKD M>K TEFIB J>AB LC QEB P>JB PR?PQ>K@B OBNRFOBP * LC BKBODV QL O>FPB FQP QBJMBO>QROB

?V Z# 4EB I>ODBO M>K E>P > MOLMLOQFLK>IIV I>ODBO EB>Q @>M>@FQV ?B@>RPB QEB I>ODBO >JLRKQ LC J>QBOF>I OBNRFOBP

+p$MunéβrΔ : durΔzâpurzvαβΔ'78B

Thespecific heat capacity (;)of a substance, commonly called its "specific heat," is the quantity of heat required to

raise the temperature of 1 gram of a substanc-e by 1 degree Celsius (or 1 kelvin):

ɔ3MB@FCF@ EB>Q @>M>@FQV ABMBKAP LKIV LK QEB HFKA LC PR?PQ>K@B >?PLO?FKD LO OBIB>PFKD EB>Q )Q FP >K FKQBKPFSB

MOLMBOQVuQEB QVMB ?RQ KLQ QEB >JLRKQ LC QEB PR?PQ>K@B FP >II QE>Q J>QQBOP &LO BU>JMIB QEB PJ>II @>PQ FOLK COVFKD

+Hp$ +Hp$

!IQELRDE QEB I>ODB M>K FP JLOB J>PPFSB QE>K QEB PJ>II M>K PFK@B ?LQE >OB J>AB LC QEB P>JB J>QBOF>I QEBV ?LQE VFBIA

QEB P>JB S>IRB CLO PMB@FCF@ EB>Q CLO QEB J>QBOF>I LC @LKPQOR@QFLK FOLK .LQB QE>Q PMB@FCF@ EB>Q FP JB>PROBA FK RKFQP LC

BKBODV MBO QBJMBO>QROB MBO J>PP >KA FP >K FKQBKPFSB MOLMBOQV ?BFKD ABOFSBA COLJ > O>QFL LC QTL BUQBKPFSB MOLMBOQFBP

EB>Q >KA J>PP 4EB JLI>O EB>Q @>M>@FQV >IPL >K FKQBKPFSB MOLMBOQV FP QEB EB>Q @>M>@FQV MBO JLIB LC > M>OQF@RI>O

PR?PQ>K@B>KAE>PRKFQPLC*JLIZ#>a]liZ 1*4).>a]liZ 1*4Due to its larger mass, a large frying pan h-as a larger heat capacity than a small frying -pan. Because

they are made of the same material, both frying- pans have the same specific heat. (credit: -Mark Blaser)

Liquid water has a relatively high specific heat (about 4.2 J/g °C); most metals have much lower specific heats

(usually less than 1 J/g °C). The specific heat of a substance varies somewhat with temperature. However, this

variation is usually small enough that we will treat specific heat as constant over the range of temperatures that will

be considered in this chapter. Specific heats of some common substances are -listed inMVWcZ 1*-. LgZXa[aX AZVkj f[ ;fddfe LlWjkVeXZj Vk .1 -r; VeY - WVi LlWjkVeXZ LpdWfc %"•é•ł& LgZXa[aX AZVk %C+] r;& heliumHe(g)5.193 waterH2O(l)4.184 ethanol C

2H6O(l)2.376

iceH2O(s) 2.093 (at -10 °C)

MVWcZ 1*-238Chapter 5 Thermochemistry[qr· lxwÅnwÅ r· iøiruikun ox° o°nn iÅ qÅÅyB331/content/col11760/1.9

KfYW_Z_W @YUji eZ ;ecced KkVijUdWYi Uj .1 -q; UdX - VUh

KkVijUdWY KocVeb $state% KfYW_Z_W @YUj $B+[ q;%

γoΨsΠ βoéèΠ T

;]/F0:5DB=

µwΨΠèusµ[;/F0:58=8

owΠ:588C

èθλusµ];/F085E:D

ozα°wµα°Mz/Q085DEC qoΠpèµ rwèθwrs O] ;/F085DA< oΠuèµMΠ/F085A;; wΠèµRs/Q085==E qèéésΠOα/Q085Φwzwqèµdw/Q085C:;

LUVbY 1*-

Jg xf lopx uif nbtt pg b tvctubodf boe jut tqfdjgjd ifbu, xf dbo efufsnjof uif bnpvou pg ifbu,c, foufsjoh ps mfbwjoh

uif tvctubodf cz nfbtvsjoh uif ufnqfsbuvsf dibohf c-fgpsf boe bgufs uif ifbu jt hbjofe ps mptu:

uif ufnqfsbuvsf dibohf,Hgjobm}Hjojujbm. Jg b tvctubodf hbjot uifsnbm fofshz, jut ufnqfsbuvsf jodsfbtft, jut gjobm

ufnqfsbuvsf jt ijhifs uibo jut jojujbm ufnqfsbuvsf,Hgjobm}Hjojujbmibt b qptjujwf wbmvf, boe uif wbmvf pgcjt qptjujwf. Jg

b tvctubodf mptft uifsnbm fofshz, jut ufnqfsbuvsf efdsfbtft, uif gjobm ufnqfsbuvsf jt mpxfs uibo uif jojujbm ufnqfsbuvsf,

H gjobm}Hjojujbmibt b ofhbujwf wbmvf, boe uif wbmvf pgcjt ofhbujwf. =nUcfbY 1*-

EYUikh_d[ @YUj

B gmbtl dpoubjojoh 8.0

2h pg xbufs jt ifbufe, boe uif ufnqfsbuvsf pg uif xbufs jodsfbtft gspn 21 µD up

85 µD. Ipx nvdi ifbu eje uif xbufs bct-psc?

Kebkj_ed

Up botxfs uijt rvftujpo, dpotjefs uiftf gbdupst:

tuif tqfdjgjd ifbu pg uif tvctubodf cfjoh ifbufe -(jo uijt dbtf, xbufs)

tuif bnpvou pg tvctubodf cfjoh ifbufe (jo uijt d-btf, 800 h)OvoéΨsΠ A evsΠ°èqvs°wΦΨΠλ;

-γvs °ouâwγπrs ét γvs γs°øsαoγπαs qvoâus -wâ γvwβ 2qoβs1 tαé° 75 ZN γé C: ZN.3

evs βøsqwtwq vsoγ ét -oγsα wβ 936C9 U4u ZN1 βé γé vsoγ 6 u ét -oγsα pV 6 ZN αsΔπwαsβ 936C9 U3 hs âéγs γvoγ

βwâqs 936C9 U wβ αsΔπwαsr γé vsoγ 6 u ét -oγsα pV 6 ZN1 -s -wzz âssr800 times as muchγé vsoγ C55 u ét -oγsα

pV 6 ZN3 QwâozzV1 -s épβsασs γvoγ βwâqs 936C9 U oαs αsΔπwαsr γé vsoγ 6 u ét -oγsα pV 6 ZN1 -s -wzz âssr64

times as muchγé vsoγ wγ pV A: ZN -γvoγ wβ1 tαé° 726 ZN γé C: ZN.3

evwβ qoâ ps βπ°°oαwWsr πβwâu γvs sΔπoγwéâE ɔ Ч p$

quotesdbs_dbs31.pdfusesText_37
[PDF] réaction exothermique

[PDF] réaction endothermique

[PDF] combustion du charbon dans l'air

[PDF] les combustions 4ème cours

[PDF] combustion du carbone définition

[PDF] identifier le dioxyde de carbone

[PDF] combustion de l'aluminium

[PDF] combustion du fer et du soufre

[PDF] oxyde magnétique de fer formule

[PDF] combustion du fer dans le dioxygène tableau d avancement

[PDF] combustion du fer wikipedia

[PDF] oxyde de fer fe2o3

[PDF] formule chimique de l'alumine

[PDF] combustion du zinc

[PDF] masse molaire co2