[PDF] Math2 – Chapitre 3 Intégrales multiples





Previous PDF Next PDF



Math2 – Chapitre 3 Intégrales multiples

Subdivisions somme de Riemann et intégrale de Riemann Exemple 2: calcul d'intégrales doubles. Exemples – ... Exercice: aire d'un domaine du plan.





Cadre Stratégique National du Rwanda en Communication pour le

L'approche CCC succède au concept IEC en ce sens qu'elle représente une approche plus femmes ont déjà eu des rapports sexuels/EDS-2000) multiples ...



CISPR/I/463/FDIS

9 janv. 2009 L'attention des Comités nationaux de l'IEC membres du ... Lorsque l'EST contient une antenne intégrale et utilise une des technologies ...



CALCUL DIFFÉRENTIEL ET ÉQUATIONS DIFFÉRENTIELLES

Cours et exercices corrigés. Sylvie Benzoni-Gavage indispensables de topologie calcul intégral



INTRODUCTION AUX EDP STOCHASTIQUES Contents 1. Résumé

naturellement ces équations sous une forme intégrale en espace et en temps: c'est Étape 1 (exercice): à n fixé



Analyse Numérique

commet par exemple



Analyse Numérique

exercices et des petits programmes en Matlab pour illustrer les notions vues en cours décrire les méthodes de base pour le calcul numérique d'intégrales ...



1903 - 2003 Un siècle de mathématiques à Nancy

de Lyon fut chargé du cours de Calcul Différentiel et Intégral `a Nancy le 1er mathématiques du vingti`eme si`ecle l'exercice suivant : pour chaque ...



Analyse complexe (Notes de cours)

25 avr. 2019 5 Calcul d'intégrales par la méthode des résidus . ... Exercices sur les fonctions analytiques complexes ............... 86.

Math2 { Chapitre 3

Integrales multiples

3.1 {

Int egralesde Riemann (rapp elsde TMB)

3.2 {

Int egralesdoubles

3.3 {

Int egralestriples

3.4 {

Aire, volume, mo yenneet centre de masse

3.1 { Integrales de Riemann (rappels de TMB)

Dans cette section:

Subdivisions, somme de Riemann et integrale de Riemann d'une fonction d'une variable

Aire sous le graphe d'une fonction

Primitives et techniques d'integration

Subdivision, somme et integrale de Riemann

Rappels {Soitf:ra;bs ÑRune fonction d'une variable: subdivisiondera;bs:Sn taa0 a1 anbuR aa0 a nb a 1|x 1 a 2|x 2 a 3|x 3 a 4|x 4 a 5|x 5 somme de Riemann defaux pointsxiP rai1;ais: R pf;txiuq n¸ i1fpxiq:xfpxq a b integrale de Riemann defsurra;bs: b a fpxqdxlimnÑ8toutxiR pf;txiuqxfpxq a b si la limite existe, est nie, et ne depend pas desxi.

L'integrale donne l'aire sous le graphe

Rappels -

b a fpxqdxaire \algebrique" sous le graphe def b a |fpxq|dxaire sous le graphe def(positive) xyfpxq |f|f |f||f|Exemple:L'aire du disque se calcule comme une integrale:

AirepDq 2AirepDq 2»

1

1a1x2dxxy?1x2D

Primitives et techniques d'integration

Pour connaitre l'integral, il sut de connaitre une primitive: Uneprimitive defsurra;bsest une fonctionFderivable telle que F

1pxqfpxqpour toutxP ra;bs. On noteFpxq»

fpxqdx.

Theoreme fondamental:»b

a fpxqdxFpbqFpaq rFpxqsba:

Integration par changement de variable:xhptq»

fpxqdx» fhptqh1ptqdt; ouhest un dieomorphisme(bijection derivable avec reciproqueh1derivable).

Integration par parties:»

fpxqg1pxqdxfpxqgpxq » f

1pxqgpxqdx:Probleme {Pas d'analogue pour les fonctions de plusieurs variables!

Exemple: aire d'un disque

Aire d'un disque {

AirepDq 2AirepDq 2»

1

1a1x2dxCalcul par changement de variable:xsintpourtP r2

;2 s, car?1x2cost.Alorsdxcost dtet

AirepDq 2»

{2 {2cos2t dt 2» {2 {2cosp2tq 12 dt 12 sinp2tq t {2 {202 02

3.2 { Integrales doubles

Dans cette section:

Subdivisions des domaines du plan

Sommes de Riemann des fonctions de deux variables

Integrale double

Volume sous le graphe d'une fonction

Theoreme de Fubini

Theoreme du changement de variables

Subdivisions d'un domaine du plan

SoitD€R2un ensemble borne, avec bordBDlisse(au moins par morceaux). Denition {Pour tout¡0, on appellesubdivision deD l'ensembleSdes carresKide cotedu plan qui couvrentDdans n'importe quel grillage de pas.En particulier, on considere deux recouvrements: una l'exterieurSext, una l'interieurSint.S intS extD BDPuisqueDest borne, les subdivisions contiennent un nombre ni de carres, et on aSint€Sext. Les carres dansSextzSintcouvrent exactement le bordBD. Sommes de Riemann d'une fonction de deux variables

Soitf:DÝÑRune fonction de deux variables.

Denition {Pour tout choix de pointspxi;yiq PKiXD, on appellesommes de Riemann defassociees aux subdivisions S ext{int et aux pointstpxi;yiqules sommes R ext{int pf;tpxi;yiquq ¸ K iPSext{int fpxi;yiq2; ou chaque termefpxi;yiq2 represente levolume algebrique(=volume) du parallelepipede de base K iet hauteurfpxi;yiq. xyfpx;yqD

Integrale double

Theoreme {Si les limiteslimÑ0Rext{int

pf;tpxi;yiquqexistent et elles sont independantes du choix des pointspxi;yiq PKiXD, alors elles coincident.Denition {Dans ce cas: on appelleintegrale double defsurDcette limite: D fpx;yqdx dylimÑ0Rext{int pf;tpxi;yiquq: on dit quefest integrable surDselon Riemannsi l'integrale¼ D fpx;yqdx dyest nie (= nombre, pas8).Proposition {Toute fonction f continueest integrable selon Riemann sur un ensemble D bornea bord lisse(par morceaux).

Signication geometrique de l'integrale double

Corollaire {

D fpx;yqdx dyvolume \algebrique" sous le graphe de f . D |fpx;yq|dx dyvolume sous le graphe de f .yz x positifnegatiff |f||f|f

Exemple 1: volume d'une boule

Volume d'une boule {Le volume de la boule

est deux fois le volume de la demi-boule B qui se trouve sous le graphe de la fonction za1x2y2: yz xpx;yqzax 2y2B

On a alors

VolpBq 2¼

Da1x2y2dx dy

Proprietes des integrales doubles

Proprietes {1qPour tout;PR, on a

D fgdx dy¼ D f dx dy¼ D g dx dy:2qSi DD1YD2et D1XD2= courbe ou point ouH, alors D fpx;yqdx dy¼ D

1fpx;yqdx dy¼

D

2fpx;yqdx dy:3q¼

D D D D gpx;yqdx dy:

Theoreme de Fubini sur un rectangle

Theoreme de Fubini sur un rectangle {Soit f:DÝÑRune fonction continue et D ra;bs rc;dsun rectangle. Alors on a D fpx;yqdx dy» b a »d c fpx;yqdy dx d c »b a fpx;yqdx dyNotation { b a dx» d c dy fpx;yq » b a »d c fpx;yqdy dxCorollaire { ra;bsrc;dsf

1pxqf2pyqdx dy»

b a f

1pxqdx»

d c f

2pyqdy

Exemple 2: calcul d'integrales doubles

Exemples {

r0;1sr0;{2sxcosy dx dy» 1 0 x dx» {2 0 cosy dy 12 x21 0 siny {2 012 r1;1sr0;1spx2y1qdx dy» 1

1dx»

1 0 px2y1qdy 1 1dx12 x2y2y y1 y0 1 1 12 x21 dx16 x3x 1 1 53

Theoreme de Fubini

Lemme {Soit D€R2un ensemble borne quelconque.

Pour toutpx;yq PD

il existe a;bPR

Pour tout xP ra;bs

il existe cpxq;dpxq PR

Au nal:xy

bxacpxqdpxqD px;yq PR2|xP ra;bs;yP rcpxq;dpxqs(Theoreme de Fubini surD{Soit f:DÝÑRune fonction continue, alors D fpx;yqdx dy» b a

»dpxq

cpxqfpx;yqdy dx

Theoreme de Fubini (suite)

Alternative {

L'ensembleDest decrit parxy

d y c apyqbpyqD px;yq PR2|yP rc;ds;xP rapyq;bpyqs(Theoreme de Fubini surD{ D fpx;yqdx dy» d c

»bpyq

apyqfpx;yqdx dy

Exemple 3: calcul d'integrale double

Exemple {SoitDla partie du planxOydelimitee par l'arc de paraboleyx2en bas, et la droitey1 en haut.xy y1yx2

1On peut decrireDcomme

D px;yq PR2|xP r1;1s;yP rx2;1s(:Par consequent:

quotesdbs_dbs10.pdfusesText_16
[PDF] TRANSFERTS THERMIQUES

[PDF] Les Zoom 's Exercices avec corrigés détaillés - Marketing - Numilog

[PDF] Les fichiers batch quot Correction quot - Free

[PDF] 68 exercices supplémentaires d 'orthographe avec leurs - BLED

[PDF] Cadre Logique

[PDF] Calcul littéral (ex1) (Corrigé) - Math2Cool

[PDF] Calcul littéral

[PDF] Capteurs et conditionneurs

[PDF] Subordonnée circonstancielle de cause, de conséquence et de but

[PDF] Documents d 'accompagnement du programme CBSV (1ère) Chimie

[PDF] Exercices supplémentaires : Trigonométrie

[PDF] exercices d 'electrostatique enonces - Fabrice Sincère

[PDF] Chimie Organique #8211 Examen

[PDF] Chimie PCSI - Decitre

[PDF] Etude de caryotypes