[PDF] [PDF] Annexe B : Le calcul dincertitude





Previous PDF Next PDF



NOTIONS de BASE sur les INCERTITUDES et le TRAITEMENT des

L'incertitude relative ?x/x représente l'importance de l'erreur par rapport à Les formules précédentes pour N = 5 donnent: x = 0754 ppm et s = 0



NOTIONS de BASE sur les INCERTITUDES et le TRAITEMENT des

L'incertitude relative ?x/x représente l'importance de l'erreur par rapport à Les formules précédentes pour N = 5 donnent: x = 0754 ppm et s = 0



Calcul derreur (ou Propagation des incertitudes)

L'erreur relative n'a pas de dimension et s'exprime en % ou L'application de la propagation des incertitudes décrite par la formule générale (6) devient.



MESURES ET INCERTITUDES

L'incertitude de mesure est la valeur qui caractérise la dispersion des valeurs qui peuvent être attribuées à la grandeur mesurée. On la note u. On distingue 



Mesures et incertitudes

Formules de propagation des erreurs On calcule l'incertitude à l'aide de la formule 6 page 9. ... De manière générale l'incertitude relative est.



Incertitudes en Sciences de la nature - Laval

On confond souvent l'incertitude relative avec la précision d'une mesure (ici le comme un facteur multiplicatif tel que 4 dans la formule de calcul de.



Annexe B : Le calcul dincertitude

Toute mesure comporte une incertitude. On peut l'exprimer sous forme relative ou absolue. L'incertitude absolue est la variation en plus ou en moins



Fiche méthode : Calculs dincertitude

L'incertitude relative s'écrit x x?. avec x la mesure effectuée et ?x son incertitude absolue. Pour obtenir l'incertitude relative en pourcentage : 100. ×.



Rapport BIPM-1978/08: Note sur lincertitude de la formule pour la

qui comporte une formule pour le calcul de la masse volumique paramètres mesurés contribuent à l'incertitude relative due à la mesure de ces paramètres ...





[PDF] NOTIONS de BASE sur les INCERTITUDES et le TRAITEMENT des

L'incertitude relative sur le produit ou(et) le quotient de mesures indépendantes est la somme des incertitudes relatives (affectés des coefficients nécessaires) 



[PDF] Calcul derreur (ou Propagation des incertitudes) - UniNE

A côté de l'erreur absolue ?x d'un résultat de mesure il est souvent commode d'indiquer l'erreur relative ?x x L'erreur absolue a toujours la même 



[PDF] MESURES ET INCERTITUDES

L'incertitude de mesure est la valeur qui caractérise la dispersion des valeurs qui peuvent être attribuées à la grandeur mesurée On la note u On distingue 



[PDF] Mesures-et-incertitudespdf - CPGE Brizeux

Erreur de mesure : c'est la différence entre la valeur mesurée et la valeur vrai : ER=(m?Mvraie) • Erreur relative : Er= ?Mvraie ?m?



[PDF] TP1 Erreurs et incertitudes

Le rapport de ces grandeurs est appelé incertitude relative elle permet d'estimer la précision du résultat Incertitude relative : Comme pour l'erreur relative 



[PDF] Annexe B : Le calcul dincertitude

Toute mesure comporte une incertitude On peut l'exprimer sous forme relative ou absolue L'incertitude absolue est la variation en plus ou en moins 



[PDF] Chapitre 2 : Les erreurs de mesure 1

L'erreur relative est le quotient de l'erreur absolue à la valeur exacte = = ? Comme il s'agit d'un nombre sans dimension (pas d'unité) on 



[PDF] Calcul dincertitude

Calcul d'incertitude par la méthode des extrêmes Considérons une quantité Q dont la valeur dépend des paramètres x y z: Q = q(xyz)



[PDF] Calculs dIncertitudes - LAMA - Univ Savoie

Les grandeurs G et x sont reliées via la formule G = f (x) On fait le calcul de l'incertitude relative avec toutes les décimales



[PDF] Calcul dincertitude

3 nov 2015 · On appelle ?f f l'incertitude relative Elle s'exprime sans dimension et pourra être donnée en pourcentage Calcul d'incertitude 3 novembre 

L'incertitude relative sur le produit ou(et) le quotient de mesures indépendantes est la somme des incertitudes relatives (affectés des coefficients nécessaires) 
  • Quelle est la formule de l'incertitude relative ?

    L'incertitude relative ?x/x représente l'importance de l'erreur par rapport à la grandeur mesurée. L'incertitude relative n'a pas d'unités et s'exprime en général en % (100?x/x).
  • Comment calculer l'incertitude relative en chimie ?

    Mesure Directe

    1Si un écart est donné par le constructeur sous la forme ?c = ±h, alors l'incertitude est de la forme : h/?3.2Lecture d'une valeur : en lisant une valeur, soit sur un appareil avec des graduations, soit sur un appareil avec différents digits. Dans ce cas-là, l'incertitude est de la forme : h/2?3.
  • Quelle est la formule de l'erreur relative ?

    L'erreur relative est le quotient de l'erreur absolue à la valeur exacte. ? ± % = ( . ± . ) ?.
  • Si l'on fait un calcul d'incertitude on trouve, en considérant ?U1=?U2=5 ? U 1 = ? U 2 = 5 mV, ?U=??U22+?U12=7mV ? U = ? U 2 2 + ? U 1 2 = 7 m V Il faudrait donc écrire U=30? U = 30 ± 7 mV.
ii

Annexe B : Le calcul d'incertitude

Les types d'incertitude

Toute mesure comporte une incertitude. On peut l'exprimer sous forme relative ou absolue.

L'incertitude absolue est la variation, en plus ou en moins, que peut prendre la mesure. Par exemple si je

mesure une longueur L = (100 ± 5) cm, alors la valeur réelle de la longueur mesurée peut être entre 95 cm et

105 cm. La valeur 5 est donc l'incertitude absolue sur la mesure. On exprime donc une mesure de la façon

suivante : m ± m

L'incertitude relative est le pourcentage que représente l'incertitude absolue par rapport à la valeur de

la mesure. Par exemple, si je mesure une masse m = (2,12 ± 0,25) g alors l'incertitude relative est :

(0,25 / 2,12) 100 % = 11,8 %

Les chiffres significatifs

Nous allons exprimer les incertitudes à l'aide des chiffres significatifs. Tout chiffre d'une mesure est

significatif sauf les "0" qui indiquent l'ordre de grandeur. Les "0" qui sont à droite d'un chiffre significatif

sont eux-mêmes significatifs. Par exemple, la valeur 3,24 comporte 3 chiffres significatifs, la valeur 0,0078

comporte 2 chiffres significatifs et la valeur 2,308 comporte 4 chiffres significatifs. Nous adopterons la

convention suivante : - L'incertitude absolue sera toujours exprimée avec un seul chiffre significatif. La mesure sera ensuite arrondie pour obtenir le même nombre de décimales que l'incertitude. - L'incertitude relative sera toujours exprimée avec deux chiffres significatifs. La mesure sera ensuite arrondie pour obtenir le même nombre de décimales que l'incertitude absolue.

Prenons d'abord comme exemple la mesure suivante m = (3,2345 ± 0,1458) kg. Après arrondissement,

cette mesure sera exprimée comme m = (3,2 ± 0,1) kg. Si nous revenons maintenant à l'exemple

d'incertitude relative que nous avons donné plus haut, cette mesure devrait alors s'écrire m = 2,1g à 12 %. Si

l'incertitude absolue sur une mesure dépasse 10 alors on utilise la notation scientifique. Dans le cas où L =

325 ± 18 cm, on écrira L = (3,3 ± 0,2) 10

2 cm. iii

Opérations mathématiques sur les mesures

Une fois que nous avons pris des mesures, il faut généralement calculer des résultats à partir de ces

valeurs. Le résultat de ce calcul sera lui-même entaché d'une incertitude. Soit deux mesures x ± x et y ±

y. Voici l'incertitude sur les opérations les plus courantes :

1. Soit z = x + y, l'incertitude absolue sur z est : z = x + y

2. Soit z = x - y, l'incertitude absolue sur z est : z = x + y

3. Soit z = xy, l'incertitude absolue sur z est : z = xy [ (x/x) + (y/y) ]

4. Soit z = x/y, l'incertitude absolue sur z est : z = x/y [ (x/x) + (y/y) ]

Voici quelques exemples. Soit x ± x = 2,1 ± 0,3 et y ± y = 0,75 ± 0,05, on a :

1. z = x + y = 2,85, l'incertitude est z = 0,3 + 0,05 = 0,35. En arrondissant cette valeur pour ne conserver

qu'un seul chiffre significatif, on obtient : z ± z = 2,9 ± 0,4

2. z = x - y = 1,35, l'incertitude est z = 0,3 + 0,05 = 0,35. En arrondissant on obtient :

z ± z = 1,4 ± 0,4

3. z = xy = 1,575, l'incertitude est :

z = xy [ (x/x) + (y/y) ] = 1,575 [ (0,3/2,1) + (0,05/0,75) ] = 0,33 z ± z = 1,6 ± 0,3

4. z = x/y = 2,8, l'incertitude est :

z = x/y [ (x/x) + (y/y) ] = 2,8 [ (0,3/2,1) + (0,05/0,75) ] = 0,5866 z ± z = 2,8 ± 0,6 iv

Méthode des extrêmes

La méthode des extrêmes consiste à déterminer les valeurs A max et A min d'une quantité A, calculée à partir de grandeurs ayant des incertitudes. A max correspond à la valeur maximale que peut prendre A et A min correspond à sa valeur minimale.

On se sert donc de ces deux quantités (A

max et A min ) pour déterminer la valeur moyenne de la quantité A (A ) et son incertitude (A). On cherche en fait le résultat suivant :

A = A ± A

où A = (A max + A min ) / 2 et A = (A max - A min ) / 2

Par exemple, si vous avez à calculer la vitesse scalaire d'un mobile se déplaçant à vitesse constant sur

une distance de (2,000 ± 0,001) m et dont le temps moyen pour parcourir cette distance est de (3,4 ± 0,5) s ,

vous pouvez calculer cette vitesse, c'est-à-dire sa valeur moyenne ainsi que son incertitude absolue.

La vitesse scalaire correspond à la distance parcourue par intervalle de temps ( v = d / t ). Nous

cherchons donc v = v ± v et avons besoin de v max et v min pour le calculer. v max = distance parcourue maximale / temps minimal = 2,001 / 2,9 = 0,6900 m/s v min = distance parcourue minimale / temps maximal = 1,999 / 3,9 = 0,5126 m/s donc, v = (v max + v min ) / 2 et v = (v max - v min ) / 2 v = (0,6900 + 0,5126 ) / 2 v = (0,6900 - 0,5126 ) / 2 v = 0,6013 m/s v = 0,0887 m/s finalement, v = ( 0,60 ± 0,09 ) m/s v

Méthode différentielle logarithmique

Soit z = f(x, y) une fonction quelconque à plusieurs variables. L'incertitude sur cette fonction sera

calculée à l'aide de la méthode différentielle logarithmique. Cette méthode de calcul s'effectue en 4 étapes

et est valide pour toutes les fonctions dérivables :

1. Équation

: Indiquer la fonction utilisée.

2. Logarithme

: Prendre le logarithme népérien (ln) de chaque côté de l'équation.

3. Dérivée

: Dériver l'équation obtenue à l'étape précédente.

4. Substitution

: Remplacer les variables utilisées par leurs valeurs numériques. Exemple #1 : x ± x = 2,1 ± 0,3 Exemple #2 : x ± x = 2,1 ± 0,3 y ± y = 0,75 ± 0,05 y ± y = 0,75 ± 0,05 z z = 2,9 0,4 z z = 1,4 0,4 Exemple #3 : x ± x = 2,1 ± 0,3 Exemple #4 : x ± x = 2,1 ± 0,3 y ± y = 0,75 ± 0,05 y ± y = 0,75 ± 0,05 z z = 1,6 0,3 z z = 2,8 0,6

35,075,01,205,03,0

85,2.4.3||ln||ln.2.1

z z yxyx zzyxzyxz35,075,01,205,03,0

35,1.4.3||ln||ln.2.

1 zz yxyx zzyxzyxz

33,075,005,0

1,23,0

575,1.4.3||ln||ln||ln.2.1

z z yy xx zzyxzyxz5867,075,005,0

1,23,0

8,2.4.3||ln||ln||ln.2/.1

zz yy xx zzyxzyxz vi Exemple #5 : x ± x = (2,1 ± 0,3) m Exemple #6 : r ± r = (2,1 ± 0,3) m

± = (43 ± 1)

= (0,75 ± 0,02) rad z z = (1,4 0,2) m z z = (0,6 0,2) 10 2 m 2

Exercices

Pour chacun des numéros suivants, calculez l'incertitude absolue sur c en utilisant a) la méthode des

extrêmes et b) la méthode différentielle logarithmique, sachant que: a ± a = (2,2 ± 0,1) m/s h ± h = (8,96 ± 0,01) kg r ± r = (3,95 ± 0,05) cm b ± b = (3,31 ± 0,02) m/s m ± m = (44,1 ± 0,1) kg ± = (57,4 ± 0,5) mz zx x zzxzxz

2353,043sin43cos02,0

1,23,0

432,1.4sincos.3|sin|ln||ln||ln.2sin.1

22
2

8,151,23,0242,55.4200.

3ln||ln|4|ln||ln.24.1

mzz rr zzrzrz 223
21
.7.6cos.5.43 4 .3/.2.1 bamcbarhcrchmbacr cbachacquotesdbs_dbs45.pdfusesText_45
[PDF] demontrer que la sociologie est une science

[PDF] critères de scientificité en recherche qualitative

[PDF] critère de scientificité

[PDF] incipit prononciation

[PDF] la sociologie est elle une science pdf

[PDF] incipit theatre

[PDF] excipit de l'assommoir

[PDF] l'assommoir incipit commentaire composé

[PDF] scl-90-r questionnaire pdf

[PDF] scl 90 r cotation

[PDF] scl 90 r version française pdf

[PDF] exemple plan de masse coté dans les trois dimensions

[PDF] échelle scl-90 révisée

[PDF] scl-90 r pdf

[PDF] exemple de permis de construire d'un garage