[PDF] La loupe et le microscope.pdf L'objet à examiner doit être





Previous PDF Next PDF



Chapitre P14 : Images formées par les systèmes optiques

Pour une lentille divergente le plan focal objet est situé après la lentille et le plan focal image avant. La distance focale f ' est donc négative. Pour 



Cours doptique géométrique – femto-physique.fr

3.7 Image d'un point à l'infini hors de l'axe et d'un point du plan focal objet. (construction pour une lentille convergente).



01_Lentilles_et_construction_optique [Mode de compatibilité]

Lentille convergente: Plan focal objet / Plan focal image. Tout rayon incident passant par un point (P) du plan focal objet émergent parallèles entre.



Principe et utilisation de lunette collimateurs et viseurs

La lunette afocale permet de voir nets des objets à l'infini. - L'objectif donne de l'objet AB pointé à l'infini une image A'B' dans son plan focal image.



La loupe et le microscope.pdf

L'objet à examiner doit être placé entre la lentille et son plan focal objet. Cela permet d'obtenir une image virtuelle droite et agrandie.



Optique géométrique

1.2 Foyer objet – Plan focal objet. Foyer image. Un système admet un foyer objet si l'objet dont l'image est à l'infini sur l'axe optique est à distance.



Rédiger un exercice

?A distances de la lentille égales plus la focale d'une lentille est grande



TP 7

Déplacer l'ensemble lentille-miroir par rapport à l'objet . • placer l'objet devant le plan focal objet : déplacer l'écran et vérifier que l'image se forme.



Exercices dOptique

Un objectif de grande focale f1 donne d'un objet AB éloigné (considéré comme à l'infini) une image dans son plan focal. Un oculaire joue le rôle de loupe et 



Lunette de visée à linfini – Collimateur – Viseur à frontale fixe

En plaçant l'objet dans le plan focal objet de la lentille on obtient une image à l'infini . II / Lunette de visée à l'infini.



[PDF] Cours doptique géométrique – femto-physiquefr

On appelle plan focal image le plan perpendiculaire à l'axe optique pas- sant par F' De même on appelle plan focal objet celui perpendiculaire à l'axe 



[PDF] O1 OPTIQUE GEOMETRIQUE

L'ajustement de la distance focale du cristallin pour produire une image nette des objets situés dans différents plans est l'accommodation Page 7 37 Les 



[PDF] Chapitre P14 : Images formées par les systèmes optiques

Pour une lentille convergente le plan focal objet est situé avant la lentille et le plan focal image après la lentille La distance focale f ' est donc 



[PDF] Optique géométrique - Melusine

Les plans focaux objet et image sont les plans perpendiculaires à l'axe optique et contenant res- pectivement F et F Remarquons que : • Le foyer objet et le 



[PDF] Chapitre V : Les systèmes centrés

Soit un système centré représenté par ses points cardinaux (F F' H et H') On considère un objet AB situé sur le plan focal objet PF du système - Dans les 



[PDF] Chapitre 10 : Optique Géométrique

Le plan perpendiculaire à l'axe et passant par F' est appelé le plan focal image • Le foyer objet F est le point objet d'une image située à l'infini (les 



[PDF] Eléments de base en Optique Géométrique

Le plan focal contient les images des points à l'infini Un objet à l'infini est caractérisé par un faisceau de rayons parallèles faisant l'angle ? avec l'axe 



[PDF] Cours dOptique Géométrique

La lunette de Galilée est composée d'une lentille convergente de focale f'1 l'objectif faisant une image réelle d'un objet réel lointain et d'une lentille 



[PDF] Chapitre 2 : Formation des images dans les conditions de Gauss

le plan focal image (?/ ) : c'est l'ensemble des points image dont l'objet se trouve à l'infini ; • le foyer principal objet F : c'est l'intersection du plan 

  • Qu'est-ce que le plan focal objet ?

    Le plan focal image est un plan perpendiculaire à l'axe optique et passant par le foyer image. Le plan focal objet est un plan perpendiculaire à l'axe optique et passant par le foyer objet.
  • Quelle est l'image d'un point du plan focal objet ?

    On appelle image d'un objet par un système optique, l'ensemble des images des points de l'objet. On appelle image d'un point, la zone de convergence des rayons, après traversée du système optique (image réelle) ou la zone d'où les rayons semblent provenir (image virtuelle).
  • Comment trouver la distance focale d'un objet ?

    En sachant la position du foyer, il est possible de déterminer la longueur focale de la lentille utilisée. Pour ce faire, il faut marquer le centre de la lentille sur la feuille. Il suffit ensuite de mesurer la distance entre le centre de la lentille et le foyer, ce qui représente la longueur focale de la lentille.
  • L'optique géométrique est une branche de l'optique qui s'appuie notamment sur le modèle du rayon lumineux. Cette approche simple permet entre autres des constructions géométriques d'images, d'où son nom.

INSTRUMENTS D'OPTIQUE : LA LOUPE ET LE MICROSCOPE

1. Caractéristiques de l'oeil

1.1 Le pouvoir de résolution

La rétine est l'écran de l'oeil. L'oeil ne peut distinguer deux détails d'un objet que

si leur image se forme sur deux cellules différentes de la rétine. Dans des conditions

normales d'éclairement et de contraste, le pouvoir de résolution de l'oeil est d'environ 1

minute d'angle (1/60 degré) soit 3×10 -4 rad.

1.2 Observation à l'infini et à une distance finie

Lors de l'observation d'un objet à l'infini, l'oeil normal forme l'image sur la rétine.

Il s'agit d'une vision sans accommodation.

Le point situé à la distance maximale qui permet la vision d'une image nette pour l'oeil au repos est appelé Punctum Remotum (PR). Il est à l'infini pour l'oeil. Pour permettre la vision d'un objet à une distance finie, l'oeil normal doit

accommoder jusqu'à ce que l'image se forme sur la rétine. Pour l'oeil, la distance limite

d'accommodation est de l'ordre de 25 cm. Le point le plus proche dont on peut avoir une image nette est appelé Punctum

Proximum (PP). Il est situé à 25 cm de l'oeil. En dessous de cette distance, la vision n'est pas

nette. La vision est nette pour un objet situé entre 25 cm et l'infini.

2. La loupe

2.1 Principe

Une loupe est constituée d'une lentille convergente de petite distance focale

(quelques centimètres). L'objet à examiner doit être placé entre la lentille et son plan focal

objet. Cela permet d'obtenir une image virtuelle, droite et agrandie.

2.2 Construction de l'image

a) Avec accommodation On observe l'image à travers la loupe. L'image obtenue est droite est agrandie. dm = 25 cm = 0,25 m

L'angle α est petit donc tanα = α

µmmABABdoncAB

75105,710325,025,0

25,0tan54=´=´´=´===--

aaa

b) Sans accommodation Pour que l'oeil puisse observer l'image sans accommodation, celle-ci doit se

trouver à l'infini. Dans ce cas, l'objet est situé dans le plan focal objet.

2.3 Grandeurs caractéristiques d'une loupe

2.3.1 Le grossissement

Le grossissement G est défini par la relation suivante : a a'=G

α : angle sous lequel est vu l'objet

α' : angle sous lequel est observé l'image par l'oeil Le grossissement est différent du grandissement. Grossir 10 fois revient à

diviser par 10 la distance d'observation. Pour voir les détails d'un petit objet, on peut

l'approcher à 25 cm de l'oeil. Quand on observe l'image de cet objet à travers une loupe qui grossit 10 fois, on voit ce que l'on verrait de l'objet si notre oeil nous permettait de le voir nettement à une distance de 2,5 cm. Dans le cas du grandissement, même si celui-ci est important, une image lointaine apparait petite.

2.3.2. Le grossissement commercial

Le grossissement commercial GC est définit comme étant le grossissement

que l'obtient lorsque l'objet est placé à la limite de la vision nette c'est-à-dire au point

appelée punctum proxinum (PP) situé à la distance dm = 25 cm. C'est le grossissement commercial qui est indiqué sur les instruments d'optique. Dans ce cas :

ABcmGC'25,0

)25('a a a´==

Image A'B' à l'infini

d = AF' dm = 25 cm = 0,25 m

L'angle α est petit donc tanα = α

25,0tan

AB==aa

2.3.3 La puissance

La puissance P est définie par la relation suivante :

ABP'a=

α' : angle sous lequel est observé l'image par l'oeil exprimé en radian (rad) AB : longueur de l'objet exprimée en mètre (m)

P : puissance exprimée en dioptrie (δ)

D'après la relation du grossissement commercial, on remarque que

GC = 0,25×P

2.3.4 La puissance intrinsèque

La puissance intrinsèque Pi, c'est la puissance lorsque l'image est à l'infini. Dans ce cas, l'objet se situe dans le plan focal objet et OA = OF

L'angle α

' étant petit, tan α' = α' OF

AB==''tanaa

Donc, on a :

fOFABPi11'===a D'après le paragraphe précédent, on a la relation

GC = 0,25×Pi (P = Pi) soit :

4 i CPG=

2.3.5 Pouvoir de résolution

Deux points A et B peuvent être vu séparés, à travers la loupe, à condition que l'angle sous lequel est vu l'image des deux points soit supérieur à 3×10 -4 rad. C'est le pouvoir de résolution de la loupe.

Pour les meilleures loupes, P = 50 δ

µmmPABdoncABP610650

103''64=´=´===--aa

3. Le microscope

3.1 Principe

Le microscope est constitué de deux systèmes de lentilles, l'objectif (placé du

côté de l'objet) et l'oculaire (placé du côté de l'oeil). La distance entre l'objectif et l'oculaire

est constante. L'objectif est constitué d'une lentille convergente L

1 dont la distance focale

objet f

1 est très petite (quelques mm).

L'oculaire est constitué d'une lentille convergente L

2 dont la distance focale

objet f

2 est de quelques centimètres.

La distance O

1O2 est invariable est de l'ordre de 20 cm. On appelle l'intervalle

optique D la distance F'1F2 entre le foyer principal image de l'objectif et le foyer principal objet de l'oculaire.

3.2 Construction de l'image

L'objet observé AB est placé en avant et proche du foyer principal objet F1 de l'objectif.

L'objectif L

1 donne de l'objet AB une image A1B1 réelle, renversée et agrandie

dite " intermédiaire ».

L'oculaire L

2 joue le rôle de loupe pour A1B1. Il est donc placé de manière que

A

1B1 se trouve entre L2, et son foyer objet F2. L'image définitive A'B' est alors

virtuelle, agrandie, droite par rapport à A

1B1 c'est-à-dire renversée par rapport à AB.

L'image intermédiaire A

1B1 joue le rôle d'objet réel pour la lentille L2.

O1 O2 D

3.3 Grandeurs caractéristiques d'un microscope

3.3.1 Le grossissement

La notion de grossissement définie pour la loupe est également valable pour le microscope. Le grossissement G est défini par la relation suivante : a a'=G

α : angle sous lequel est vu l'objet

α' : angle sous lequel est observé l'image par l'oeil

3.3.2. Le grossissement commercial

Le grossissement commercial GC est définit comme étant le grossissement

que l'obtient lorsque l'objet est placé à la limite de la vision nette c'est-à-dire au point

appelée punctum proxinum (PP) situé à la distance dm = 25 cm. C'est le grossissement commercial qui est indiqué sur les instruments d'optique. Dans ce cas :

ABcmGC'25,0

)25('a a a´== et 4 i CPG=

3.3.3 La puissance

La puissance P est définie par la relation suivante :

ABP'a=

α' : angle sous lequel est observé l'image par l'oeil exprimé en radian (rad) AB : longueur de l'objet exprimée en mètre (m)

P : puissance exprimée en dioptrie (δ)

1211

11''gaa´=´==PABBA

BAABP La puissance d'un microscope est égale au produit de la puissance P

2 de l'oculaire

par le grandissement γ

1 de l'objectif : P = P2×γ1

d dm = 25 cm = 0,25 m

L'angle α est petit donc tanα = α

25,0tan

AB==aa

3.3.4 La puissance intrinsèque

La puissance intrinsèque correspond au cas où l'image A'B' est à l'infini; l'image intermédiaire A

1B1 se forme alors au foyer objet F2 de l'oculaire.

Dans ce cas, l'expresson la puissance intrinsèque est : 2'

1ffPiD=

La puissance intrinsèque du microscope ne dépend que des caractériqtiques optiques du microscope.

3.3.5 Pouvoir de résolution

Deux points A et B peuvent être vu séparés, à travers le microscope, à condition que l'angle sous lequel est vu l'image des deux points soit supérieur à 3×10 -4 rad.

C'est le pouvoir de résolution du microscope.

Pour un microscope dont le grossissement G = 400

µmmGABdoncABGAB

avecG CCC aaa a a Le pouvoir de résolution du microscope ne dépend que du grossissement commercial. Cependant, on ne peut pas augmenter le pouvoir de résolution du microscope en augmentant le grossissement commercial. A partir d'un certain grossissement (de l'ordre de

1500), les phénomènes de diffraction ne sont plus négligeables et ils limitent le pouvoir de

résolution des microscopes. D'autres techniques, comme le microscope électronique, permettent d'obtenir un meilleur pouvoir de résolution.quotesdbs_dbs45.pdfusesText_45
[PDF] position de l image lentille convergente

[PDF] bel ami chapitre 1

[PDF] excipit bel ami texte

[PDF] bel ami chapitre 2

[PDF] bel ami texte intégral pdf

[PDF] bel ami analyse littéraire

[PDF] quoique habillé d'un complet de soixante francs

[PDF] scolinfo$*

[PDF] bel ami wikisource

[PDF] bel ami incipit lecture analytique

[PDF] scolinfohttps www google fr

[PDF] scolin *

[PDF] reglage soupape scooter chinois 50cc 4t

[PDF] calage distribution scooter 4t chinois

[PDF] comment reglage soupape scooter 4 temps