[PDF] LES SUITES (Partie 1) que l'on attribue le





Previous PDF Next PDF



Terminale S - Etude de limites de suites définies par récurrence

Une suite définie par récurrence est une suite définie par son premier terme alors en passant à la limite dans la relation de récurrence on obtient.



Convergence de suites Suites récurrentes

Que peut-on dire de la limite éventuelle d'une suite récurrente? Soit (un) la suite définie par la relation de récurrence un+1 =.



Raisonnement par récurrence Limite dune suite

9 ott 2013 Limite d'une suite. 1 Raisonnement par récurrence. 1.1 Axiome de récurrence. Définition 1 Soit une propriété P définie sur N. Si :.



Raisonnement par récurrence. Limite dune suite

14 ott 2015 Le raisonnement par récurrence s'apparente à la théorie des dominos. ... Soit la suite (un) définie par : u0 = 0 3 et ?n ? N



Suites f-définies par récurrence Sommaire

8 gen 2021 est une suite f -définie par récurrence pour la fonction f : x ?? ? ... Par unicité de la limite d'une suite on a donc f(l) = l.



Raisonnement par récurrence. Limite dune suite

11 lug 2021 3) Démontrer cette conjecture par récurrence et donner la valeur exacte de u2021. EXERCICE 3. Soit la suite (un) définie pour n ? 1 par : un = ...



LES SUITES (Partie 1)

que l'on attribue le principe du raisonnement par récurrence. Le nom a La suite (un) définie sur ? par A = N a pour limite +?.



Suites 1 Convergence

Calculer la limite de la suite définie par : u0 = 4 et pour tout n ? N un+1 = 4un +5 un +3 .



Suites

déterminer sa limite. Allez à : Correction exercice 7 : Exercice 8 : On considère la suite ( ) ?? définie par 0 = 0 et par la relation de récurrence.



LES SUITES (Partie 2)

Soit (un) et (vn) deux suites définies sur ?. Méthode : Déterminer une limite par comparaison ... Hypothèse de récurrence :.



[PDF] Etude de limites de suites définies par récurrence - Parfenoff org

Une suite définie par récurrence est une suite définie par son premier terme et par une relation de récurrence qui définit chaque terme à partir du précédent 



[PDF] Raisonnement par récurrence Limite dune suite - Lycée dAdultes

9 oct 2013 · Calculer la limite de la suite (un) définie par u0 = 1 et un+1 = ?2 + un On peut montrer par récurrence que la suite (un) est croissante et 



[PDF] Raisonnement par récurrence Limite dune suite - Lycée dAdultes

14 oct 2015 · Algorithme : Déterminer à partir de quel entier N un est supérieur à un nombre donné A (suite croissante) Soit la suite (un) définie par :



[PDF] Les suites - Partie I : Raisonnement par récurrence

Les suites ci-dessous sont définies pour tout entier n Lesquelles ont une limite finie ? Exercice 5 cocher la ou les bonnes réponses Exercice



[PDF] Étude dune suite définie par récurrence - Melusine

On considère la suite (un) définie sur N par u0 = 2 et ?n ? N un+1 = Recherchons l'éventuelle limite de la suite un point fixe de f



[PDF] RAISONNEMENT PAR RECURRENCE ET LIMITE DE SUITE

Raisonnement par récurrence et limite de suite – Terminale Générale – Spé maths mathématique définie sur ? : c'est le principe du raisonnement par 



[PDF] Suites définies par récurrence (g) un+1 = f(u

4 Étudiez la suite (un) définie par un+1 = f(un) dans les cas suivants (monotonie convergence/divergence limites ) Il sera utile de discuter selon la 



[PDF] Suites - Licence de mathématiques Lyon 1

Soit ( ) une suite définie par la relation de récurrence +1 = En déduire que la suite est convergente et déterminer sa limite



[PDF] LIMITE DUNE SUITE - Christophe Bertault

Cette méthode est intéressante surtout lorsque un est défini par des produits et des quotients et qu'on peut espérer des simplifications Attention ! Une suite 



[PDF] LES SUITES (Partie 2) - maths et tiques

Soit (un) et (vn) deux suites définies sur ? Méthode : Déterminer une limite par comparaison Hypothèse de récurrence : Supposons qu'il existe un 

  • Comment déterminer la limite d'une suite définie par récurrence ?

    Si une suite (un) est décroissante et minorée alors la suite (un) converge. Soit une suite (un) définie par u0 et un+1 = f(un) convergente vers ?. Si la fonction associée f est continue en ?, alors la limite de la suite ? est solution de l'équation f(x) = x.9 oct. 2013
  • On considère un nombre q strictement positif et la suite (un) définie pour tout entier positif ou nul n par un=qn. La règle de calcul de limite est simple : si 0<q<1 alors limqn=0. si q=1 alors limqn=1.
LES SUITES (Partie 1) 1

LES SUITES (Partie 1)

I. Raisonnement par récurrence

1) Le principe

C'est au mathématicien italien Giuseppe Peano (1858 ; 1932), ci-contre, que l'on attribue le principe du raisonnement par récurrence. Le nom a probablement été donné par Henri Poincaré (1854 ; 1912). On considère une file illimitée de dominos placés côte à côte. La règle veut que lorsqu'un domino tombe, alors il fait tomber le domino suivant et ceci à n'importe quel niveau de la file. Alors, si le premier domino tombe, on est assuré que tous les dominos de la file tombent. Définition : Une propriété est dite héréditaire à partir du rang n 0 si lorsque pour un entier k n 0 , la propriété est vraie, alors elle est vraie pour l'entier k+1. Dans l'exemple, si on suppose qu'un domino (k) tombe alors le domino suivant (k+1) tombe également.

Principe du raisonnement par récurrence :

Si la propriété P est : - vraie au rang n

0 (Initialisation), - héréditaire à partir du rang n 0 (Hérédité), alors la propriété P est vraie pour tout entier n n 0 Dans l'exemple, le premier domino tombe (initialisation). Ici n 0 = 1. L'hérédité est vérifiée (voir plus haut).

On en déduit que tous les dominos tombent.

2 Remarque : Une démonstration par récurrence sur les entiers est mise en oeuvre lorsque toute démonstration "classique" est difficile.

2) Exemples avec les suites

Méthode : Démontrer par récurrence l'expression générale d'une suite

Vidéo https://youtu.be/H6XJ2tB1_fg

On considère la suite (u

n ) définie pour tout entier naturel n par í µ +2í µ+3 et =1.

Démontrer par récurrence que : í µ

í µ+1 • Initialisation : à Le premier domino tombe. 0+1 =1=í µ

La propriété est donc vraie pour n = 0.

• Hérédité : - Hypothèse de récurrence : à On suppose que le k-ième domino tombe. Supposons qu'il existe un entier k tel que la propriété soit vraie : í µ 0 í µ+1 - Démontrons que : à Le k+1-ième domino tombe-t-il ? La propriété est vraie au rang k+1, soit : í µ 0#$ í µ+2 0#$ 0 +2í µ+3, par définition í µ+1 +2í µ+3, par hypothèse de récurrence +2í µ+1+2í µ+3 +4í µ+4 í µ+2

à Le k+1-ième domino tombe.

• Conclusion : à Tous les dominos tombent.

La propriété est vraie pour n = 0 et héréditaire à partir de ce rang. D'après le principe

de récurrence, elle est vraie pour tout entier naturel n, soit : í µ í µ+1 Méthode : Démontrer la monotonie par récurrence

Vidéo https://youtu.be/nMnLaE2RAGk

On considère la suite (u

n ) définie pour tout entier naturel n par í µ 3 +2 et =2.

Démontrer par récurrence que la suite (u

n ) est croissante. On va démontrer que pour tout entier naturel n, on a : í µ • Initialisation : í µ =2 et í µ 3 +2= 3

×2+2=

6 3 >2 donc í µ 3 • Hérédité : - Hypothèse de récurrence : Supposons qu'il existe un entier k tel que la propriété soit vraie : í µ 0#$ 0 - Démontrons que : La propriété est vraie au rang k+1 : í µ 0#. 0#$

On a í µ

0#$ 0 donc : 3 í µ+1 3 et donc 3 í µ+1 +2≥ 3 +2 soit í µ 0#. 0#$ • Conclusion :

La propriété est vraie pour n = 0 et héréditaire à partir de ce rang. D'après le principe

de récurrence, elle est vraie pour tout entier naturel n, soit : í µ et donc la suite (u n ) est croissante.

3) Inégalité de Bernoulli

Soit un nombre réel a strictement positif.

Pour tout entier naturel n, on a :

1+í µ

≥1+í µí µ.

Démonstration au programme :

Vidéo https://youtu.be/H6XJ2tB1_fg

• Initialisation : - La propriété est vraie pour n = 0.

En effet,

1+í µ

=1 et 1+0Ã—í µ=1. • Hérédité : - Hypothèse de récurrence : Supposons qu'il existe un entier k tel que la propriété soit vraie :

1+í µ

0 ≥1+í µí µ - Démontrons que : la propriété est vraie au rang k+1, soit :

1+í µ

0#$ ≥1+ í µ+1

1+í µ

0 ≥1+í µí µ, d'après l'hypothèse de récurrence.

Donc :

1+í µ

1+í µ

0

1+í µ

1+í µí µ

Soit :

1+í µ

0#$ ≥1+í µí µ+í µ+í µí µ

Soit encore :

1+í µ

0#$ ≥1+ í µ+1 ≥1+ í µ+1 í µ, car í µí µ ≥0.

Et donc :

1+í µ

0#$ ≥1+ í µ+1 • Conclusion :

La propriété est vraie pour n = 0 et héréditaire à partir de ce rang. D'après le principe

de récurrence, elle est vraie pour tout entier naturel n. Remarque : L'initialisation est indispensable sinon on peut démontrer des propriétés fausses ! En effet, démontrons par exemple que la propriété "2 n est divisible par 3" est héréditaire sans vérifier l'initialisation. 4

Supposons qu'il existe un entier k tel que 2

k est divisible par 3. 2 k+1 = 2 k x 2 = 3p x 2, où p est un entier (d'après l'hypothèse de récurrence). = 6p

Donc 2

k+1 est divisible par 3. L'hérédité est vérifiée et pourtant la propriété n'est jamais vraie.

II. Limite finie ou infinie d'une suite

1) Limite infinie

Exemple :

La suite (u

n ) définie sur â„• par í µ a pour limite +∞. En effet, les termes de la suite deviennent aussi grands que l'on souhaite à partir d'un certain rang.

Si on prend un réel a quelconque, l'intervalle

contient tous les termes de la suite à partir d'un certain rang.

Définitions : - On dit que la suite (u

n ) admet pour limite +∞ si tout intervalle a réel, contient tous les termes de la suite à partir d'un certain rang et on note : lim í±¢â†’#C - On dit que la suite (u n ) admet pour limite -∞ si tout intervalle , b réel, contient tous les termes de la suite à partir d'un certain rang et on note : lim í±¢â†’#C Algorithme permettant de déterminer un rang à partir duquel une suite croissante de limite infinie est supérieure à un nombre réel A :

On considère la suite (u

n ) définie par í µ =2 et pour tout entier n, í µ =4í µ Cette suite est croissante et admet pour limite +∞.

Voici un algorithme écrit en langage naturel :

En appliquant cet algorithme avec A = 100, on

obtient en sortie n = 3.

A partir du terme u

3 , la suite est supérieure à 100.

En langage calculatrice et Python, cela donne :

Vidéos dans la Playlist :

Langage naturel

Entrée

Saisir le réel A

Initialisation

Affecter à n la valeur 0

Affecter à u la valeur 2

Traitement des données

Tant que u < A

Faire

Affecter à n la valeur n + 1

Affecter à u la valeur 4u

Sortie

Afficher n

5

TI CASIO Python

2) Limite finie

Exemple : La suite (u

n ) définie sur â„•* par í µ =1+ a pour limite 1. En effet, les termes de la suite se resserrent autour de 1 à partir d'un certain rang. Si on prend un intervalle ouvert quelconque contenant 1, tous les termes de la suite appartiennent à cet intervalle à partir d'un certain rang.

Définition : On dit que la suite (u

n ) admet pour limite L si tout intervalle ouvert contenant L contient tous les termes de la suite à partir d'un certain rang et on note : lim í±¢â†’#C

Une telle suite est dite convergente.

Définition : Une suite qui n'est pas convergente est dite divergente.

Remarque :

Une suite qui est divergente n'admet pas nécessairement de limite infinie.

Par exemple, la suite de terme générale

-1 prend alternativement les valeurs -1 et 1. Elle n'admet donc pas de limite finie, ni infinie. Elle est donc divergente.

3) Limites des suites usuelles

Propriétés :

-lim í±¢â†’#C í µ=+∞, lim í±¢â†’#C =+∞, lim í±¢â†’#C - lim í±¢â†’#C =0, lim í±¢â†’#C =0, lim í±¢â†’#C =0.

Démonstration de : lim

í±¢â†’#C =0

Soit un intervalle quelconque ouvert

, a réel positif non nul, contenant 0.

Pour tout n, tel que : n >

I , on a : 0 < < a et donc 6 Ainsi, à partir d'un certain rang, tous les termes de la suite appartiennent à l'intervalle et donc lim í±¢â†’#C =0.

III. Opérations sur les limites

Vidéo https://youtu.be/v7hD6s3thp8

1) Limite d'une somme

lim í±¢â†’#C L L L lim í±¢â†’#C L' lim í±¢â†’#C

L + L'

F.I.* * Forme indéterminée : On ne peut pas prévoir la limite éventuelle.

Exemple : lim

í±¢â†’#C lim í±¢â†’#C =+∞ et lim í±¢â†’#C D'après la règle sur la limite d'une somme : lim í±¢â†’#C

2) Limite d'un produit

lim í±¢â†’#C L L > 0 L < 0 L > 0 L < 0 +∞ -∞ +∞ 0 lim í±¢â†’#C L' +∞ +∞ -∞ -∞ +∞ -∞ -∞ +∞ ou lim í±¢â†’#C L L' +∞ -∞ -∞ +∞ +∞ +∞ -∞ F.I.

Exemple : lim

í±¢â†’#C M +1N +3 lim í±¢â†’#C =0 donclim í±¢â†’#C M +1N=1 et lim í±¢â†’#C =+∞ donc lim í±¢â†’#C +3 D'après la règle sur la limite d'un produit : lim í±¢â†’#C M +1N +3

3) Limite d'un quotient

lim í±¢â†’#C L L L > 0 ou L < 0 ou L > 0 ou L < 0 ou 0 ou lim í±¢â†’#C L'0 ou 0 avec >0 0 avec >0 0 avec <0 0 avec <0 0

L' > 0 L' < 0 L' > 0 L' < 0

ou lim í±¢â†’#C

0 +∞ -∞ -∞ +∞

F.I. F.I. 7

Exemple : lim

í±¢â†’#C

Qí±¢

Q3 lim í±¢â†’#C =+∞ donc lim í±¢â†’#C =-∞ et donc lim í±¢â†’#C -3=-∞ D'après la règle sur la limite d'un quotient : lim í±¢â†’#C

Qí±¢

Q3 =0

Remarque :

Tous ces résultats sont intuitifs. On retrouve par exemple, un principe sur les opérations de limite semblable à la règle des signes établie sur les nombres relatifs. Il est important cependant de reconnaître les formes indéterminées pour lesquelles il faudra utiliser des calculs algébriques afin de lever l'indétermination ou utiliser d'autres propriétés sur les calculs de limites. Les quatre formes indéterminées sont, par abus d'écriture : "∞-∞", "0×∞", " " et " 0 0

Méthode : Lever une indétermination

Vidéo https://youtu.be/RQhdU7-KLMA

Vidéo https://youtu.be/wkMleHBnyqU

Vidéo https://youtu.be/loytWsU4pdQ

Vidéo https://youtu.be/9fEHRHdbnwQ

Déterminer les limites suivantes :

a) lim í±¢â†’#C -5í µ+1 b) lim í±¢â†’#C í µ-3 í µ c) lim í±¢â†’#C

5í µ

2 +4

4í µ

2 +3í µ d) lim í±¢â†’#C

3í µ

2 í µ+3 e) lim í±¢â†’#C í µ+2- a) • lim í±¢â†’#C =+∞ et lim í±¢â†’#C -5í µ+1=-∞ Il s'agit d'une forme indéterminée du type "∞-∞". • Levons l'indétermination en factorisant par le monôme de pus haut degré : -5í µ+1=í µ T1-

5í µ

1

U=í µ

T1- 5 1 Uquotesdbs_dbs31.pdfusesText_37
[PDF] conjecture d'une suite

[PDF] comportement d'une suite exercices

[PDF] comportement d'une suite 1ere s

[PDF] conjecturer le comportement d'une suite ? l'infini

[PDF] limite finie d'une suite

[PDF] conjecturer la limite d'une suite avec calculatrice casio

[PDF] déterminer la limite d'une suite

[PDF] un+1=un+2n+3

[PDF] monotonie d'une suite

[PDF] conjecturer l'expression de vn en fonction de n

[PDF] en déduire l'expression de vn puis celle de un en fonction de n

[PDF] suite conjecture

[PDF] conjecturer une suite avec la calculatrice

[PDF] liste des conjonctions de coordination et de subordination pdf

[PDF] les valeurs des conjonctions de coordination