[PDF] 2.2 Quelques propriétés des intégrales définies





Previous PDF Next PDF



TD 1 Intégrales généralisées

16 sept. 2016 ramène au calcul d'une primitive c'est-à-dire d'une « antidérivée ». ... Les deux méthodes principales pour calculer intégrales et ...



Chapitre 3 Intégrale double

R et on voudrait calculer (si elle est définie) l'intégrale ? ?D f(x y)dxdy. Si le domaine D considéré n'est pas un rectangle mais est borné



Intégrales de fonctions de plusieurs variables

Cette définition est effective : elle permet de calculer des intégrales. 8.3 Calcul des intégrales. Pour calculer l'intégrale d'une fonction f sur un intervalle 



Illustrer par des exemples quelques méthodes de calcul dintégrales

Enfin on utilisera l'analyse complexe (le théorème de résidus notamment) pour calculer des intégrales de la variable réelle. Cependant



Cours de mathématiques Chapitre 12 : Calcul Intégral

5 mai 2009 I Chapitre 12 : Calcul Intégral. I.A Intégrale d'une fonction continue positive. I.A.1 Définition. Définition 1:.



CALCUL INTEGRAL ET SERIES

2.4.1 Intégrale d'une fonction continue par morceaux sur un segment . retrouve pour le calcul des intégrales les mêmes méthodes et arguments que ceux ...



Intégrale de Gauss

2ème méthode : Calcul par encadrement. La fonction logarithme est concave elle se trouve donc en dessous de sa tangente en 1



Calculs dintégrales et de primitives

On a vu dans le chapitre «Intégrale de Riemann» que toute fonction continue sur un Théorème 1.6 (Changement de variable pour le calcul d'intégrales).



Calcul de lintégrale de Fresnel

Leçons où il peut être évoqué : 239 (Fonction définie par une intégrale). 1 Introduction. Il existe plusieurs méthodes pour calculer une intégrale. Le calcul de 



2.2 Quelques propriétés des intégrales définies

2.3 Primitives: calcul d'intégrales définies. Souvent dans la pratique



CALCUL INTÉGRAL - maths et tiques

Ce symbole fait penser à un "S" allongé et s'explique par le fait que l'intégral est égal à une aire calculée comme somme infinie d'autres aires Plus tard un second mathématicien allemand Bernhard Riemann(1826 ; 1866) établit une théorie aboutie du calcul intégral





Calculs d’intégrales - CNRS

— Calculs de primitives Exercice 2 Pour chaque intervalle I et chaque fonction f calculer toutes les primitives de f sur I (si possible)1 2 1 I = Rf(x)=xex2 f(x)dx = 1 2 ? ex2(x2)Õ dx =



Searches related to calcul integrale PDF

Integration Formulas 1 Common Integrals Indefinite Integral Method of substitution ? ?f g x g x dx f u du( ( )) ( ) ( )? = Integration by parts ? ?f x g x dx f x g x g x f x dx( ) ( ) ( ) ( ) ( ) ( )? ?= ? Integrals of Rational and Irrational Functions 1 1 n x dx Cn x n ?+ 1 dx x Cln x ?cdx cx C= + 2 2 x ?xdx C= + 3 2 3 x ?x dx C= + 2 1 1

What are the integration formulas?

Integration Formulas. 1. Common Integrals. Indefinite Integral. Method of substitution. ? ?f g x g x dx f u du( ( )) ( ) ( )? = Integration by parts. ? ?f x g x dx f x g x g x f x dx( ) ( ) ( ) ( ) ( ) ( )? ?= ? Integrals of Rational and Irrational Functions.

What is the formula for intègre?

On intègre utilisant les régles d’intégration (puissance) k hx3 3 + x3=2 3=2 i 1 0 k 1 3 + 1 3=2 k 1: 2 Solution de d) Z 3 2 (x+ 1) p x 2dx On pose u= x 2. k Alors x= u+ 2, dx= du.

What are the characteristics of an intégrale dé?nie?

Du point de vue pratique, l’intégrale dé?nie donne l’accummulation d’une certaine quantité pendant un certain intervalle [a;b], ou bien l’aire de la région sous le graphe d’une fonction. Avant de procéder avec des applications on va élaborer quelques dé?nitions et téchniques. 110 4.3.1 Dé?nitions et premiers résultats.

What are the integrals of trigonometric functions?

Integrals of Trigonometric Functions ?sin x dx = ? cosx +C ?cos x dx = sinx +C ?tan x dx = ln secx +C

Définition2.4.(Intégrabili téausensdeR iemann)Unefonc tionréellef:[a,b]Restdite intégrablesur[a,b],si ??>0,?f 1 ,f 2 :[a,b]Rfonctionsenescalierstell esque : 1.f 1 ?f?f 2 (i.e.?x?[a,b],f 1 (x)?f(x)?f 2 (x)) 2. a b f 2 (x)dx- a b f 1 (x)dx

Théorème2.5.(Intégrale définie)Onsu pposequelafonctionré ellef:[a,b]Restinté grablesur

0 Alorslasuite réelle determegénérale I n convergedansRets alimit e,notée a b f(x)dxestappel éeintégraledéfiniede fsur[a,b]. Danscecour snousn ousintéressero nsessentiell ementauxfonctionscontinueset auxfonctionsconti- nuesparmo rceaux,dé finiessurunintervallefermébo rné[a,b]deR. Définition2.6.Ondi tquelafon ctionf:[a,b]Restcont inueparmorceauxsifestborn éeet l'ensembledespointsdedisco ntinuité defestdeca rdinal fini. Nousadmettr onsetutiliseronssouventle théorè mesuivant: Théorème2.7.Soit[a,b]unin tervallefermébornédeR.Alorstoutefonctioncontinuef:[a,b]R estinté grablesur[a,b].

Note2.8.Dansl'exp ression

a b f(x)dx,aetbsontlesbo rnesd'intég ration,xestlav ariabl ed'inté-

gration;c'estunevariab lemuette.Ellepe utdoncêt reremplacéepartoute autrevaria ble,àl'exception

dece llesdesbornesd'int égratione tbiensûrdelavaria bleutiliséepournomméelafonc tion.Ainsi,si f:

[a,b]Restinté grablesur[a,b],onaleségalitéssuivantes: a b f(x)dx= a b f(t)dt= a b f(u)du= a b f(v)dv= a b f(y)dy.

2.2Que lquespropriétésdesintégral esdéfinies

Onsu pposedanslalistedespr opriétésci- dessou sque[a,b]estunin terval lefermébornédeR,fetg

sontdesfon ctions intégrablessur[a,b].

1.Qu andlesbornesd 'intégratio nsontconfondues:

a a f(x)dx=0

2.La relat iondeChasles:

?c?[a,b], a c f(x)dx+ c b f(x)dx= a b f(x)dx

3.Qu andonpermutele sbor nesd'intégration:

b a f(x)dx=- a b f(x)dx

4.La linéa rité:

i. a b (f+g)(x)dx= a b f(x)dx+ a b g(x)dx ii. ?λ?R, a b (λf)(x)dx=λ a b f(x)dx

5.Qu andlegraphed'u nedesf onctionsesttou joursaudessusdel' autre:

Sif?gsur[a,b],alors

a b f(x)dx? a b g(x)dx

2.2Quel quespropriétésdesintég ralesdéfinies11

6.Com paraisondelavaleurabsoluedel'i ntégra leetde l'intégraledelavaleura bsolue :

a b f(x)dx a b |f(x)|dx

2.3Pri mitives:calculd'intégralesdéfinies

Souvent,danslapratique,cal culerun eintég raledéfinieseramènerapournous,àch ercheruneprim itive

pourlafon ctionà intégrer. Définition2.9.Soitf:[a,b]Runefonc tionréelle.Onappellepri mitivedef,toutefonctiondéri- vableFdéfiniesur[a,b]etvér ifiantF =f.

Exemple2.10.

•Surl' intervalle[-2,3],lafonctionFdéfinieparF(x)=-cos(x)estunep rimitive delafonction fdéfiniesur[-2,3]parf(x)=sin(x). •SurR,lafonctionx- 1 2 x 2 estune primitive def:x-x;lafonctionx- 1 2 x 2 +7enes t uneaut re. Théorème2.11.Sil afoncti onf:[a,b]Radmetunepri mitiveF,alorslesprimitivesdefsont touteslesfoncti onsGdela formeG=F+λpourλparcourantR. Corollaire2.12.Soientf:[a,b]Runefonc tionréellesupposéeadmett reuneprimitiveF,x 0 ?[a,b] ety 0 0 enx 0 Exemple2.13.Soitf:[-2,2]Rdéfinieparf(x)=-x.fadmetuneuniqu eprimitiv eF,prenant lava leur3en1.PourdéterminerF,onécritquetouteprimitivedefestdel aforme F(x)=- 1 2 x 2

oùλestunec onstanter éelle.LaconditionF(1)=3fixelava leurde laconstanteλ.F(1)=3siet seule-

mentsiλ= 7 2 .Conclusion:F(x)= 1 2 (-x 2 +7). Note2.14. Uneprim itive(quellequ'ellesoit)de f:[a,b]Restauss iappeléeintégral eindéfiniedef etest notée f(x)dx(noterl'absence debornes). Remarque2.15.(conséque ncedelalinéari tédeladérivation)

1.Po urdeuxfoncti onsf,g:[a,b]R,siFetGsontdesprimi tivesr espectivesdefetg,alorsla

somme(F+G)estunep rimitived e(f+g).

2.Si festunep rimitived ef,alorspourtoutréelλ,(λF)estunep rimitive de(λf).

Théorème2.16.(théorème delamoyenne)Soitf:[a,b]Runefonc tionréellecontinuesur [a,b].Ilexisteunpointc?[a,b]telquef(c)= 1 b-a a b f(x)dx. (Lenom breréel 1 b-a a b f(x)dxestlamoy enne delafonctionfsurl'in tervalle[a,b]). Enut ilisantlethéorèmedelamoyen neonpe utprouverlethéorèmefonda mentalsuivant: Théorème2.17.Soitf:[a,b]Runefonc tionréellecontinuesur[a,b].Etantdonnéunpointx 0 x 0 x f(t)dtestunep rimitivede f.Cetteprimitive s'annuleenx 0 Danslaprat ique,c 'estlecorollairesuivantque l'onappliquep ourcalculer l'intégraledéfinied'une fonctiondontonconna îtuneprimitiv e. Théorème2.18.Soitf:[a,b]Runefonc tionréellecontinuesur[a,b].SiFestunep rimitived ef, alorsona a b f(x)dx=F(b)-F(a).

12Intégration:fonctionréelled'unevari ableréelle.

2.4Tech niquesd'intégration

Danscepara graphe ,ondécritlestechniquesdebaseàmaî triserpou rmeneràbienl ecalculd'unein té-

graledéfinie.

2.4.1Primiti vesdefonctionsusuelles

Lali stedeprimitives defonc tionsusuellesàconnaître: Primitivesdequelquesfonctionsusu ell es(λestunec onstanterée lle)

1)pou rα?R,α-1,ona

x dx= x

α+1

α+1

2) 1 x dx=ln|x|+λ

3)p ourα?R,α0,ona

e αx dx= 1 e αx

4)p ourunréelastrictementpositifetdifférentde1,

a x dx= a x ln(a) 5) sin(x)dx=-cos(x)+λ 6) cos(x)dx=sin(x)+λ

2.4.2Techni qued'intégrationparparties

Late chniqued'intégrationparpar tiesestfondéesurlaformulededér ivatio nd'unproduitdefonctions

dérivables: (u×v) =u

×v+u×v

Théorème2.19.Soientuetvdeuxfoncti onsréellescontinûmentdériv ables(i.e.desfonctionsdériva-

blesetdo ntlesd érivéessontc ontinues)s urunintervalleI.

Alorslafoncti onréel leproduitu

×vadmetuneprimi tivesurIeton a:

1. (u

×v)(x)dx=(u×v)(x)-

(u×v )(x)dx

2.si aetbsontdeuxpo intsdeI,

a b (u

×v)(x)dx=[(u×v)(x)]

a b a b (u×v )(x)dx (danscetteformu le,[(u×v)(x)] a b désigne(u(b)×v(b)-u(a)×v(a))

Exemple2.20.

1.Cal culeruneprimitivedel afonctionf:RRdéfinieparf(x)=xe

αx oùαestunno mbrer éel nonnul .

Solution:

a)O nposeu (x)=e αx etv(x)=x,cequidonneparexempleu(x)= 1 e αx enu tilisantlesfor- mulesdesprimi tivesdesf onctionsusuelles.Onav (x)=1. b)En utilis antlea)etlatechniqued'intég ratio nparpar ties,onob tient: xe αx dx= 1 xe αx 1× 1 e αx dx.

Onen dédui t

xe αx dx= 1 xe αx 1 2 e αx +λ,oùλestuneco nstanterée llequelconque. 2. Calculeruneprimitived elafoncti onf:]0,+∞[R,f(x)=ln(x).

Solution:onposeu

(x)=1,v(x)=ln(x),d'oùu(x)=x,v (x)= 1 x etal ors ln(x)dx=xln(x)- x× 1 x dx=xln(x)- dx,cequidonne ln(x)dx=xln(x)-x+λoùλestune constanter éellequelconque.

2.4Techn iquesd'intégration13

quotesdbs_dbs27.pdfusesText_33
[PDF] integrale pdf

[PDF] intégrale formule

[PDF] découverte des nombres décimaux

[PDF] activité nombres décimaux 6ème

[PDF] qui a inventé les nombres décimaux

[PDF] décimaux entiers...en 6ème toute une histoire

[PDF] activité nombres décimaux sixième

[PDF] science et technologie secondaire 1 exercices

[PDF] epi puissance de 10

[PDF] activité sur les suites numériques

[PDF] les 3 cas d'égalité des triangles exercices

[PDF] cas d'égalité des triangles 4ème

[PDF] cas d'égalité des triangles controle

[PDF] égalité des triangles 4ème exercices

[PDF] trigonométrie navigation