[PDF] Limites et continuité Figure 2 – Graphe de la





Previous PDF Next PDF



2. Continuité des fonctions

« Une fonction f est continue sur un intervalle si on peut dessiner son graphe sans lever le crayon d'un bout à l'autre de l'intervalle. » Continuité sur un.



Continuité sur un intervalle.

E(x)=0n'existe pas donc la fonction partie entière n'est pas continue en p . 1.3. Continuité sur un intervalle. Définition : Soit f une fonction définie sur un 



Continuité et dérivabilité dune fonction

7 nov. 2014 Définition 1 : Dire qu'une fonction f a pour limite ? en a signifie que tout intervalle ouvert contenant ? contient.



CONTINUITÉ

La fonction f est continue et strictement croissante sur l'intervalle 2;3. ???? et elle change de signe. Donc d'après le théorème des valeurs 



Continuité sur un intervalle

Continuité sur un intervalle. Rappels sur la dérivation f est une fonction dérivable en a de I. Dans un repère la tangente à la courbe représentative A de 



Limites et continuité

Figure 2 – Graphe de la fonction partie entière x ?? ?x?. Théorème 5. Soient a un réel f et g deux fonctions définies sur un intervalle ouvert. I contenant 



Continuité sur un intervalle Exercices

Continuité sur un intervalle. Exercices. Lycée Carnot E1A. 1. Soient a



Continuité et monotonie sur un intervalle

Propriété 2. Soient u : I ? J et v : I ? R des fonctions définies sur des intervalles I et J respectivement. Si la fonction u est continue sur I et si la 



Fonctions continues et uniformement continues

Définition de la continuité uniforme sur un intervalle. Exercice : si ƒ est u-continue Théorème Caractérisation de la continuité par les suites.



Chapitre 2 Continuité des fonctions réelles

Soit I un intervalle de R et soit f : I ? R une fonction continue strictement monotone. Alors : (1) L'ensemble J := f(I) est un intervalle



[PDF] Continuité sur un intervalle

Continuité sur un intervalle Rappels sur la dérivation • a et a + h désignent deux nombres réels de I avec h ? 0 Dire que f est dérivable en a signifie 



[PDF] Continuité sur un intervalle - Meilleur En Maths

Définition : Soit f une fonction définie sur un ensemble Df et soit a un réel appartenant à Df On dit que f est continue en a lorsque lim



[PDF] CONTINUITÉ DES FONCTIONS - maths et tiques

Définition intuitive : Une fonction est continue sur un intervalle si sa courbe représentative peut se tracer sans lever le crayon Méthode : Reconnaître 



[PDF] 2 Continuité des fonctions - Apprendre-en-lignenet

On dit qu'une fonction est continue sur un intervalle si elle est continue en tout point de l'intervalle Aux extrémités de l'intervalle il faut comprendre 



[PDF] Continuité dune fonction Théorème des valeurs intermédiaires

Les fonctions polynômes rationnelles valeur absolue racine carrée ainsi que les fonctions trigonométriques sont continues sur tout intervalle sur lequel 



Continuité sur un intervalle

Si une fonction continue sur un intervalle prend des valeurs positives et des valeurs négatives alors elle s'annule sur cet intervalle $ \bullet$: L'image par 



[PDF] Continuité et monotonie sur un intervalle - CPGE Brizeux

On dit que f est continue sur I si f est continue en chaque point de son intervalle de définition I Remarque : Soit I un intervalle non vide On note C 0(I R) 



[PDF] Chapitre 2 Continuité des fonctions réelles

Soit I un intervalle de R et soit f : I ? R une fonction continue strictement monotone Alors : (1) L'ensemble J := f(I) est un intervalle dont les bornes 



[PDF] LIMITE ET CONTINUITE - AlloSchool

III) OPERATIONS SUR LES FONCTIONS CONTINUES 1) Continuité sur un intervalle Définition : Soit une fonction dont le domaine de définition est  



[PDF] Continuité - AlloSchool

L'image d'un intervalle par une fonction continue: • L'image d'un segment par une fonction continue est un segment • L'image d'un intervalle par une 

  • Comment montrer la continuité d'une fonction sur un intervalle ?

    Définition : Soit une fonction f définie sur un intervalle I. On dit que f est continue sur I si on peut tracer la courbe représentative de f sur I "sans lever le crayon". Propriétés : 1) Les fonctions x xn (n ?N ) et plus généralement les fonctions polynômes sont continues sur R .
  • C'est quoi une fonction continue sur un intervalle ?

    Définition : Continuité d'une fonction en un point
    Soit �� ? ? . On dit qu'une fonction à valeur réelle �� ( �� ) est continue en �� = �� si l i m ? ? ? �� ( �� ) = �� ( �� ) .
  • Comment déterminer la continuité ?

    La fonction f est dite continue au point a si f(a) est une limite de f en ce point. Si F est séparé (ou même seulement T1) comme tout espace métrisable, il suffit pour cela qu'il existe une limite de f en ce point.
Limites et continuité Université Joseph Fourier, Grenoble Maths en Ligne

Limites et continuité

Bernard Ycart

Vous avez déjà une compréhension intuitive de ce qu"est la limite d"une fonction. Ce chapitre n"en est pas moins le plus important de votre cours d"analyse. C"est l"occasion ou jamais de comprendre les epsilons! Votre travail devrait être facilité si vous avez déjà assimilé le chapitre sur les suites, mais ce n"est pas indispensable.

Table des matières

1 Cours 1

1.1 Vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Opérations sur les limites . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Limites unilatérales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Convergence des fonctions monotones . . . . . . . . . . . . . . . . . . . 10

1.6 Comparaison de fonctions . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Limites à connaître . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.8 Continuité en un point . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.9 Continuité sur un intervalle . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Entraînement 22

2.1 Vrai ou faux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 QCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Devoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Corrigé du devoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Compléments 42

3.1 Cauchy et les limites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Continuité uniforme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Arguments de continuité . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Discontinuités des fonctions monotones . . . . . . . . . . . . . . . . . . 48

3.5 Pourquoi définir la continuité? . . . . . . . . . . . . . . . . . . . . . . . 49

8 novembre 2011

Maths en LigneLimites et continuitéUJF Grenoble1 Cours

1.1 Vocabulaire

UnefonctionfdeRdansRest définie par songraphe: c"est un sous-ensembleΓ deR×R, tel que pour toutx?R, au plus un réelyvérifie(x,y)?Γ. S"il existe, ce réelyest l"imagedexet est notéf(x). L"ensemble desxqui ont une image parf est ledomaine de définitiondef. Nous le noteronsDf. La notation standard est la suivante :f D f-→R x?-→f(x) SiAest un sous-ensemble deDf, l"imagedeA, notéef(A), est l"ensemble des images des éléments deA. f(A) ={f(x), x?A} SiBest un sous-ensemble deR, l"image réciproquedeB, notéef-1(B), est l"ensemble desantécédentsdes éléments deB. f -1(B) ={x? Df, f(x)?B} Attention à la notationf-1:f-1(B)est défini même sifn"est pas bijective. Par exemple, sifest l"application valeur absolue,x?→ |x|, f(]-2,1[) = [0,2[etf-1([1,2]) = [-2,-1]?[1,2] Définition 1.Soitfune fonction, de domaine de définitionDf, à valeurs dansR.

On dit quefest :

•constantesi?x,y? Df, f(x) =f(y) •croissantesi?x,y? Df,(x6y) =?(f(x)6f(y)) •décroissantesi?x,y? Df,(x6y) =?(f(x)>f(y)) •strictement croissantesi?x,y? Df,(x < y) =?(f(x)< f(y)) •strictement décroissantesi?x,y? Df,(x < y) =?(f(x)> f(y)) •monotonesi elle est croissante ou décroissante •majoréesif(Df)est majoré •minoréesif(Df)est minoré •bornéesif(Df)est borné Le plus souvent, ces définitions s"appliqueront à desrestrictionsdefà un intervalle

Iinclus dansDf.

f |I

I-→R

x?-→f(x) 1

Maths en LigneLimites et continuitéUJF GrenobleDéfinition 2.Soitfune fonction deRdansRetx? Df. SoitPune des propriétés

de la définition 1. On dit quefpossède la propriétéP •au voisinage dexs"il existe un intervalle ouvertIcontenantx, tel que la restric- tion defàIpossède la propriétéP. •au voisinage de+∞s"il existe un réelAtel que la restriction defà]A,+∞[ possède la propriétéP. •au voisinage de-∞s"il existe un réelAtel que la restriction defà]- ∞,A[ possède la propriétéP. Par exemple, la fonction valeur absoluex?→ |x|, est : •décroissante au voisinage de-∞ •décroissante au voisinage de-1 •croissante au voisinage de1 •croissante au voisinage de+∞ •bornée au voisinage de0 Les opérations sur les réels s"étendent aux fonctions de manière naturelle. •addition :f+g D f∩ Dg-→R x?-→(f+g)(x) =f(x) +g(x) •multiplication : fg D f∩ Dg-→R x?-→(fg)(x) =f(x)g(x) •multiplication par un réel : λf D f-→R x?-→(λf)(x) =λ(f(x)) •comparaison : f6g?? ?x? Df∩ Dg, f(x)6g(x) L"addition a les mêmes propriétés que celle des réels : l"ensemble des fonctions deR dansRmuni de l"addition est un groupe commutatif. Muni de l"addition et de la multiplication par un réel, c"est un espace vectoriel. Cependant, le produit de deux fonctions peut être nul sans que les deux fonctions le soient.

1.2 Convergence

Nous commençons par la convergence en un point, vers une limite finie. Afin d"éviter les cas pathologiques, nous supposerons toujours que les fonctions étudiées sont définies au voisinagedu point considéré (cf. définition 2). 2

Maths en LigneLimites et continuitéUJF GrenobleDéfinition 3.Soitaun réel etfune fonction définie au voisinage dea, sauf peut-être

ena, et à valeurs dansR. Soitlun réel. On dit queftend verslquandxtend vers a, ou quefa pour limitelenasi ?ε >0,?η >0,(0<|x-a|6η) =?(|f(x)-l|6ε)(1)

On notera :

lim x→af(x) =lou bienf(x)--→x→al . Tout intervalle centré enlcontient toutes les valeursf(x), pourxsuffisamment proche dea. Observez quefpeut très bien ne pas être définie ena, et admettre quand même une limite ena. Voici un premier exemple (figure 1). f R ?-→R x?-→f(x) =xsin(1/x)

Pour toutx?R?,-16sin(1/x)61. Donc si|x|6εetx?= 0, alors|xsin(1/x)|6ε:-0.30 -0.24 -0.18 -0.12 -0.06 0.00 0.06 0.12 0.18 0.24 0.30

f(x) x f(x)=x sin(1/x)

Figure1 - Graphe de la fonctionx?→xsin(1/x).

f(x)tend vers0quandxtend vers0. La convergence peut se caractériser en termes de suites. Théorème 1.Soitaun réel etfune fonction définie au voisinage dea, sauf peut-être ena, et à valeurs dansR. Soitlun réel. La fonctionftend verslquandxtend vers a, si et seulement si, pour toute suite(xn), à valeurs dansDf\{a}et convergeant vers a, la suite(f(xn))converge versl. Démonstration: Montrons d"abord la condition nécessaire : siftend verslau sens de la définition 3, alors pour toute suite(xn)convergeant versa, la suite(f(xn))tend versl. 3

Maths en LigneLimites et continuitéUJF GrenobleSoitε >0, etηtel que si0<|x-a|6η, alors|f(x)-l|< ε. Soit(xn)une suite

deDf\{a}convergeant versa. Il existen0tel que pour toutn>n0,0<|xn-a|6η. Mais0<|xn-a|6ηentraîne|f(xn)-l|6ε, par hypothèse. Donc la suite(f(xn)) converge versl. Voici maintenant la condition suffisante, dont nous allons démontrer la contraposée : sifne tend pas versl, alors il existe une suite(xn)convergeant versatelle que la suite (f(xn))ne tend pas versl. Ecrivons donc quefne tend pas versl. ?ε >0,?η >0,?x? Df,(0<|x-a|6η)?(|f(x)-l|> ε)

Posonsη= 1/n:

?x? Df,(0<|x-a|61/n)?(|f(x)-l|> ε) Notonsxnun des réels dont l"existence est affirmée ci-dessus. La suite(xn)converge versacar|xn-a|<1/n, pourtant la suite(f(xn))ne tend pas versl, car|f(xn)-l|>ε. Voici deux conséquences faciles de la définition. Proposition 1.Soitfune fonction deRdansRetaun réel.

1. Sif(x)converge quandxtend versa, alors la limite est unique.

2. Sia? Dfet sif(x)converge versl?Rquandxtend versa, alorsfest bornée

au voisinage dea.

Démonstration:

1. Supposons quefvérifie la définition 3 pour deux réelsletl?distincts. Posons

ε=|l-l?|/3. Alors les intervalles[l-ε,l+ε]et[l?-ε,l?+ε]sont disjoints. Pour xsuffisamment proche dea, le réelf(x)devrait appartenir aux deux intervalles

à la fois : c"est impossible.

2. Fixonsε >0, etηtel quef(x)reste dans l"intervalle]l-ε,l+ε[pour tout

0<|x-a|6η. Alors :

?x?[a-η,a+η]∩ Df, f(x)6l+ε et ?x?[a-η,a+η]∩ Df, f(x)>l-ε Doncfest majorée et minorée au voisinage dea. 4 Maths en LigneLimites et continuitéUJF Grenoble1.3 Opérations sur les limites La notion de limite se combine avec les opérations sur les fonctions comme on

l"attend. Nous énoncerons les résultats dans le théorème 2. Ils peuvent se déduire des

résultats analogues sur les suites numériques, via le théorème 1. Nous conseillons au lecteur de le vérifier, puis de comparer cette approche avec les démonstrations directes qui suivent. Elles sont basées sur le lemme suivant. Lemme 1.Soitaun réel. Soientfetgdeux fonctions deRdansR, définies au voisinage dea, sauf peut-être ena. 1. Si lim x→af(x) = limx→ag(x) = 0 alors lim x→a(f+g)(x) = 0

2. Sifest bornée au voisinage deaet

lim x→ag(x) = 0, alors lim x→a(fg)(x) = 0

Démonstration:

1. Fixonsε >0. Soitη1tel que pour0<|x-a|6η1,|f(x)|6ε/2. De même, soitη2

tel que pour0<|x-a|6η2,|g(x)|< ε/2. Alors, pour0<|x-a|6min{η1,η2}, |(f+g)(x)|=|f(x) +g(x)|6|f(x)|+|g(x)|6ε2 +ε2 d"où le résultat.

2. Soitη1etMdeux réels tels que

?x?[a-η1,a+η1],|f(x)|6M . Fixonsε >0. Soitη2tel que pour0<|x-a|6η2,|g(x)|6ε/M. Alors, pour

0<|x-a|6min{η1,η2},

|(fg)(x)|=|f(x)||g(x)|6MεM d"où le résultat. Théorème 2.Soitaun réel. Soientfetgdeux fonctions deRdansR, définies sur un intervalle ouvert autour dea. 5 Maths en LigneLimites et continuitéUJF Grenoble1. Si lim x→af(x) =letlimx→ag(x) =l? alors lim x→a(f+g)(x) =l+l? 2. Si lim x→af(x) =letlimx→ag(x) =l? alors lim x→a(fg)(x) =ll? Démonstration: Pour nous ramener au lemme 1, observons d"abord quef(x)tend verslquandxtend versa, si et seulement sif(x)-ltend vers0.

1. Quandxtend versa,f(x)tend versletg(x)tend versl?, doncf(x)-letg(x)-l?

tendent vers0. Donc f(x)-l+g(x)-l?= (f+g)(x)-(l+l?) tend vers0d"après le point1.du lemme 1. D"où le résultat.

2. Nous voulons montrer quef(x)g(x)-ll?tend vers0. Ecrivons :

quotesdbs_dbs29.pdfusesText_35
[PDF] la continuité exercices corrigés

[PDF] continuité synonyme

[PDF] continuité uniforme

[PDF] continuité cours

[PDF] continuité traduction

[PDF] continuité ou continuation

[PDF] continuation définition

[PDF] fonction de plusieurs variables continuité exercices corrigés

[PDF] prolongement par continuité dune fonction

[PDF] calcul limite fonction 2 variables

[PDF] fonction ? deux variables réelles

[PDF] limites et continuité des fonctions de plusieurs variables

[PDF] fonction de plusieurs variables cours mp

[PDF] montrer qu'une fonction est continue sur un intervalle

[PDF] montrer qu'une fonction est continue sur r