[PDF] CONTINUITÉ DES FONCTIONS La courbe représentative d'





Previous PDF Next PDF



CONTINUITÉ DES FONCTIONS

La courbe représentative d'une fonction continue se trace sans lever le crayon. Définition : Soit une fonction définie sur un intervalle contenant un réel 



Pourquoi rétablir la continuité écologique des cours deau ?

5 mai 2010 1 Plus de 60 000 seuils et barrages sur les cours d'eau en France ... 5 Quand la rivière retrouve sa continuité. 6 D'autres avantages issus ...



Pourquoi rétablir la continuité écologique des cours deau ?

5 mai 2010 1 Plus de 60 000 seuils et barrages sur les cours d'eau en France ... 5 Quand la rivière retrouve sa continuité. 6 D'autres avantages issus ...



Plaquette Améliorer la continuité écologique de nos cours deau

AMÉLIORER LA CONTINUITÉ ÉCOLOGIQUE. DE NOS COURS D'EAU une nécessité pour atteindre le bon état des eaux. Rivière « La Colmont » à Brecé 



Cours de mathématiques - Exo7

Montrons que f (c) = y. Page 15. LIMITES ET FONCTIONS CONTINUES. 4. CONTINUITÉ SUR UN INTERVALLE. 15.



LIMITES ET CONTINUITÉ (Partie 1)

LIMITES ET CONTINUITÉ. (Partie 1). I. Limite d'une fonction à l'infini. 1) Limite finie à l'infini. Intuitivement : On dit que la fonction f admet pour 



Guide de mise en œuvre de la continuité écologique sur les cours d

Les critères utilisés peuvent être : - les ouvrages les plus limitants pour la continuité écologique et impactant le plus long linéaire de cours d'eau. - les 



LIMITES et CONTINUITE

d) Limite d'une fonction composée. Le théorème qui suit est assez naturel. Théorème : Soit f et g deux fonctions. a L et L' trois 



livre-analyse-1.pdf - Exo7 - Cours de mathématiques

Ce tome débute par l'étude des nombres réels puis des suites. Les chapitres suivants sont consacrés aux fonctions : limite



Restauration de la continuité écologique des cours deau : exemples

La Direction « Agriculture ressources naturelles et environnement (DGO3) » est en charge de la gestion des cours d'eau non navigables de 1e catégorie. (dont le 



[PDF] LIMITE ET CONTINUITE - AlloSchool

III) OPERATIONS SUR LES FONCTIONS CONTINUES 1) Continuité sur un intervalle Définition : Soit une fonction dont le domaine de définition est  



[PDF] CONTINUITÉ DES FONCTIONS - maths et tiques

Tout le cours en vidéo : https://youtu be/9SSEUoyHh2s Étudier graphiquement la continuité des fonctions et définies et représentées ci-dessous



[PDF] LIMITES ET CONTINUITÉ (Partie 1) - maths et tiques

Yvan Monka – Académie de Strasbourg – www maths-et-tiques 1 LIMITES ET CONTINUITÉ (Partie 1) I Limite d'une fonction à l'infini



[PDF] Limites et continuité

Dans cette section a est un réel quelconque et nous considérons la limite (bilatérale) d'une fonction f en a au sens de la définition 3 Toutes les fonctions 



[PDF] Continuité et dérivabilité dune fonction - Lycée dAdultes

7 nov 2014 · La fonction f est continue sur un intervalle I si et seulement si f est continue en tout point de I Remarque : Graphiquement la continuité d 



[PDF] Continuité dune fonction Théorème des valeurs intermédiaires

Remarques sur la continuité: ? Si une fonction est continue sur un intervalle I elle est continue en chaque point de cet intervalle ? 



[PDF] Leçon 1 : LIMITES Cours LIMITES ET CONTINUITÉ - cloudfrontnet

Limites et Continuité _ Tles S (C D E F) Page 2 / 12 Powered by www educamer http:/ / maths educamer Le cours ( min)



[PDF] Limites et continuité - Fontaine Maths

Cours de mathématiques ECT 1ère année Chapitre 7 Limites et continuité Adrien Fontaine Année scolaire 2020–2021 



[PDF] LIMITE ET CONTINUITE - Moutamadrisma

Cours Limite et continuité avec Exercices avec solutions PROF: ATMANI NAJIB 2BAC SM BIOF I)LIMITE D'UNE FONCTION EN UN POINT



[PDF] LIMITES ET CONTINUITE - Unisciel

Limites et continuité Cours de mathématiques - ECS1 - Catherine Laidebeure - Lycée Albert Schweitzer Le Raincy - 2011 

:
CONTINUITÉ DES FONCTIONS 1

CONTINUITÉ DES FONCTIONS

Tout le cours en vidéo : https://youtu.be/9SSEUoyHh2s

Partie 1 : Notion de continuité

Le mathématicien allemand Karl Weierstrass (1815 ; 1897) apporte les premières définitions rigoureuses au concept de limite et de continuité d'une fonction.

1) Définition

Définition intuitive :

Une fonction est continue sur un intervalle, si sa courbe représentative peut se tracer sans lever le crayon. Méthode : Reconnaître graphiquement une fonction continue

Vidéo https://youtu.be/XpjKserte6o

Étudier graphiquement la continuité des fonctions et définies et représentées ci-dessous

sur l'intervalle -2;2

Correction

La courbe de la fonction peut se tracer sans lever le crayon, elle semble donc continue sur l'intervalle -2;2 La courbe de la fonction ne peut pas se tracer sans lever le crayon, elle n'est donc pas continue sur l'intervalle -2;2

Cependant, elle semble continue sur

-2;1 et sur 1;2

Définition : Soit une fonction définie sur un intervalle contenant un réel .

- est continue en si : lim - est continue sur si est continue en tout point de .

Théorème : Si une fonction est dérivable sur un intervalle , alors elle est continue sur cet

intervalle. - Admis - 2

Exemples et contre-exemples :

est continue en a est continue en a est continue en a n'est pas continue en a n'est pas continue en a

2) Cas des fonctions de référence

Les fonctions suivantes sont continues sur l'intervalle donné.

Fonction Intervalle

Polynôme ℝ

0;+∞

1 -∞;0 et

0;+∞

sin ℝ cos ℝ

3) Opérations sur les fonctions continues :

Propriétés :

et sont deux fonctions continues sur un intervalle . (∈ℕ) et sont continues sur . Si ne s'annule pas sur , alors est continue sur . Si est positive sur , alors B est continue sur . Remarque : Dans la pratique, les flèches obliques d'un tableau de variations traduisent la continuité et la stricte monotonie de la fonction sur l'intervalle considéré. 3 Méthode : Étudier la continuité d'une fonction définie par morceaux

Vidéo https://youtu.be/03WMLyc7rLE

On considère la fonction définie sur ℝ par =C

La fonction est-elle continue sur ℝ ?

Correction

Les fonctions ⟼-+2, ⟼-4 et ⟼-2+13 sont des fonctions polynômes

donc continues sur ℝ.

Ainsi la fonction est continue sur

-∞;3 , sur 3;5 et sur

5;+∞

Étudions alors la continuité de en 3 et en 5 : - lim =lim -+2=-3+2=-1 lim =lim -4=3-4=-1

Donc : lim

=lim =(3)

Et donc la fonction est continue en 3.

- lim =lim -4=5-4=1 lim =lim -2+13=-2×5+13=3

La limite de en 5 n'existe pas. On parle de limite à gauche de 5 et de limite à droite de 5.

La fonction n'est donc pas continue en 5.

La fonction est continue sur

-∞;5 et sur

5;+∞

En représentant la fonction , on peut

observer graphiquement le résultat précédent. Partie 2 : Théorème des valeurs intermédiaires

Exemple :

On donne le tableau de variations de la

fonction . 4 Il est possible de lire dans le tableau, le nombre de solutions éventuelles pour des équations du type L'équation =18 possède 1 solution comprise dans l'intervalle -1;1 L'équation =0 possède 3 solutions chacune comprise dans un des intervalles -4;-3 -3;-1 et -1;1 L'équation =-3 ne possède pas de solution. L'équation =3possède 2 solutions : l'une égale à -3, l'autre comprise dans l'intervalle -1;1

Théorème des valeurs intermédiaires :

On considère la fonction continue sur l'intervalle [;]. Pour tout réel compris entre ()et (), l'équation = admet au moins une solution comprise entre et . Dans le cas où la fonction est strictement monotone sur l'intervalle , alors la solution est unique. - Admis - 5

Dans la pratique :

Pour démontrer que l'équation

=0 admet une unique solution sur l'intervalle [;], on démontre que :

1. est continue sur [;],

2. change de signe sur [;],

3. est strictement monotone sur [;],

Les conditions 1 et 2 nous assurent que des solutions existent. Avec la condition 3 en plus, nous savons que la solution est unique. Méthode : Appliquer le théorème des valeurs intermédiaires (1)

Vidéo https://youtu.be/fkd7c3IAc3Y

On considère la fonction définie sur ℝ par -1.

1) Démontrer que l'équation

=0 admet une unique solution sur l'intervalle 1;2

2) À l'aide de la calculatrice, donner un encadrement au centième de la solution .

Correction

1) • La fonction est continue sur l'intervalle

1;2 , car une fonction polynôme est continue sur ℝ. 1 =1 -1 -1=-1<0 2 =2 -2 -1=3>0 Donc la fonction change de signe sur l'intervalle 1;2 =3 -2=(3-2)

Donc, pour tout de

1;2 >0. La fonction f est donc strictement croissante sur l'intervalle 1;2 ➡ D'après le théorème des valeurs intermédiaires, l'équation =0 admet alors une unique solution sur l'intervalle 1;2

2) A l'aide de la calculatrice, il est possible d'effectuer des

" balayages » successifs en augmentant la précision.

Vidéo TI https://youtu.be/MEkh0fxPakk

Vidéo Casio https://youtu.be/XEZ5D19FpDQ

Vidéo HP https://youtu.be/93mBoNOpEWg

La solution est comprise entre 1,4 et 1,5.

En effet :

1,4 ≈-0,216<0 1,5 ≈0,125>0 6 La solution est comprise entre 1,46 et 1,47.

En effet :

1,46 ≈-0,019<0 1,47 ≈0,0156>0

On en déduit que : 1,46<<1,47.

Remarque :

Une autre méthode consiste à déterminer un encadrement par dichotomie : Méthode : Appliquer le théorème des valeurs intermédiaires (2)

Vidéo https://youtu.be/UmGQf7gkvLg

On considère la fonction définie sur ℝ par -4 +6.

Démontrer que l'équation

=2 admet au moins une solution sur [-1 ; 4].

Correction

est continue sur [-1 ; 4] car une fonction polynôme est continue sur ℝ. -1 -1 -4 -1 +6=1 4 =4 -4×4 +6=6

Donc 2 est compris entre

et

➡ D'après le théorème des valeurs intermédiaires, on en déduit que l'équation

2 admet au moins une solution sur l'intervalle [-1 ; 4].

Remarque : Ici, on n'a pas la stricte monotonie de , donc on n'a pas l'unicité de la solution.

Partie 3 : Application à l'étude de suites

Théorème :

Soit une fonction continue sur un intervalle et soit une suite ( ) telle que pour tout , on a : ∈ et

Si (

) converge vers alors - Admis - Méthode : Étudier une suite définie par une relation de récurrence du type

Vidéo https://youtu.be/L7bBL4z-r90

Vidéo https://youtu.be/LDRx7aS9JsA

7

Soit (

) la suite définie par =8 et pour tout entier naturel , =0,85 +1,8.

1) Dans un repère orthonormé, on considère la fonction définie par

=0,85+1,8. a) Tracer les droites d'équations respectives =0,85+1,8 et =. b) Dans ce repère, placer sur l'axe des abscisses, puis en utilisant les droites précédemment tracées, construire sur le même axe et . On laissera apparent les traits de construction. c) À l'aide du graphique, conjecturer la limite de la suite (

2) En supposant que la suite (

) est convergente, démontrer le résultat conjecturé dans la question 1.c.

Correction

1) a) b) - On place le premier terme

sur l'axe des abscisses. On trace l'image de par pour obtenir sur l'axe des ordonnées - On reporte sur l'axe des abscisses à l'aide de la droite d'équation =. - On fait de même pour obtenir puis c) En continuant le tracé en escalier, celui-ci se rapprocherait de plus en plus de l'intersection des deux droites. On conjecture que la limite de la suite ( ) est 12. 8

2) La suite (

) converge et la fonction est continue sur ℝ. La limite de la suite ( ) est donc solution de l'équation

Soit : 0,85+1,8=

-0,85=1,8

0,15=1,8

La suite (

) converge vers 12. Afficher la représentation graphique en escalier sur la calculatrice :

Vidéo TI https://youtu.be/bRlvVs9KZuk

Vidéo Casio https://youtu.be/9iDvDn3iWqQ

Vidéo HP https://youtu.be/wML003kdLRo

quotesdbs_dbs29.pdfusesText_35
[PDF] continuité traduction

[PDF] continuité ou continuation

[PDF] continuation définition

[PDF] fonction de plusieurs variables continuité exercices corrigés

[PDF] prolongement par continuité dune fonction

[PDF] calcul limite fonction 2 variables

[PDF] fonction ? deux variables réelles

[PDF] limites et continuité des fonctions de plusieurs variables

[PDF] fonction de plusieurs variables cours mp

[PDF] montrer qu'une fonction est continue sur un intervalle

[PDF] montrer qu'une fonction est continue sur r

[PDF] continuité et dérivabilité

[PDF] continuité d'une fonction en un point exercice

[PDF] prolongement par continuité exemple

[PDF] continuité sur un intervalle exercices corrigés