[PDF] TD1 – Continuité des fonctions de plusieurs variables réelles





Previous PDF Next PDF



CONTINUITE - EXERCICES CORRIGES

CONTINUITE - EXERCICES CORRIGES Etudier la continuité de f sur R ... Représentez graphiquement cette fonction et indiquez ses points de discontinuité.



Limite continuité

dérivabilité



Feuille dexercices no 2 — Continuité

Donner un exemple de fonction définie sur ]01[ `a valeurs dans ]0



TD1 – Continuité des fonctions de plusieurs variables réelles

Exercice 1. Étudier la continuité des fonctions suivantes : f(x y) = On rappelle que pour étudier la continuité d'une fonction f sur un point il faut :.



Séance de soutien PCSI2 numéro 8 : Fonctions réelles : limites et

Exercice 12 : Soit f : R ? R continue et décroissante. Montrer que f admet un unique point fixe. Correction :Unicité : Soit g : x ?? f(x) ? x.



Limites. Continuité en un point

Correction ?. [005388]. Exercice 8 **IT. Etudier en chaque point de R l'existence d'une limite à droite à gauche



Fonctions continues

Exercice 3. Les fonctions suivantes sont-elles prolongeables par continuité sur R? a) f(x) = sinx·sin f(t) s'annule en au moins un point de [a a+b.



TD3 – Différentiabilité des fonctions de plusieurs variables Exercice

Continuité. La fonction est continue dans R2 {(00)}. Pour étudier la continuité au point (0



Chapitre 2 - Continuité dune fonction de plusieurs variables

(ii) On dit que f est continue sur D si elle est continue en tout point de D. Exercice 1. 1. Montrer qu'une fonction constante est continue.



Chapitre 1 - Fonctions de plusieurs variables. Limites dans R

L'intérêt de cette nouvelle définition est illustré par l'exercice 4. On énonce maintenant le critère séquentiel pour la continuité en un point :.



[PDF] ( ) ( ) Exercices avec solutions : LIMITE ET CONTINUITE - AlloSchool

Est une prolongement par continuité de la fonction en 0 0 x = Exercice 16 : Etudier la la continuité des onctions suivantes :



[PDF] CONTINUITE - EXERCICES CORRIGES - AlloSchool

Représentez graphiquement cette fonction et indiquez ses points de discontinuité Poids en grammes Jusqu'à : 20 50 100 250 Exercice n°4



[PDF] Limite continuité théorème des valeurs intermédiaires dérivabilité

Exercice 47 : On considère une fonction :? ? ? dérivable en tout réel 1 Que déclare le théorème des accroissements finis à propos de : ( + ?) ? ( 



[PDF] Fonctions réelles : limites et continuité - Correction des exercices

Exercice 12 : Soit f : R ? R continue et décroissante Montrer que f admet un unique point fixe Correction :Unicité : Soit g : x ?? f(x) ? x



[PDF] Limites de fonctions et continuité - Lycée dAdultes

11 juil 2021 · Limites de fonctions et continuité Définitions EXERCICE 1 Soit f définie sur R par : f(x)=(x + 2)e?x + 1 et la droite d d'équation y = 1 



[PDF] Terminale générale - Continuité - Exercices - Physique et Maths

Continuité – Exercices – Devoirs Exercice 1 corrigé disponible On considère la fonction f définie sur [ 3 ; + ? [ par : f(x) = E(x) pour x ? [3 ; 4[



[PDF] Limite et continuité - Xiffr

On suppose en outre que la fonction f est continue en un point x0 ? R Déterminer la fonction f Exercice 36 [ 01799 ] [Correction] On cherche les fonctions f 



Continuité dune Fonction - Coursuniversel

12 jan 2020 · Cours de maths: la continuité d'une fonction avec des exercices corrigés pour tous les niveaux: Terminale S et ES simple et précis



CONTINUITÉ dune FONCTION en un POINT - Exercice Corrigé

8 sept 2022 · Les exercices????ici ? https://bit ly/3Xx3fBa#maths #terminale #exercicecorrigé Comment montrer qu'une Durée : 7:14Postée : 8 sept 2022



[PDF] Limites Continuité en un point - Exo7 - Exercices de mathématiques

Exercice 1 ***I Soit f une fonction réelle d'une variable réelle définie et continue sur un voisinage de +? On suppose que la fonction f(x+1)? f(x) 

:
TD1 – Continuité des fonctions de plusieurs variables réelles

Polytech" Paris - UPMC Agral 3, 2016 - 2017

TD1 - Continuité des fonctions de plusieurs variables réelles Exercice 1.Étudier la continuité des fonctions suivantes : f(x,y) =( x2-y2x

2+y2(x,y)?= (0,0)

0sinong(x,y) =(

y3(x-1)2+y2(x,y)?= (1,0)

0sinon

h(x,y) =( xln(1+x3)y(x2+y2)(x,y)?= (0,0)

0sinonk(x,y) =(

6x2yx

2+y2(x,y)?= (0,0)

0sinon

Solution. On rappelle que pour étudier la continuité d"une fonctionfsur un point il faut : - vérifier si la limite defau pointx0existe et, si elle existe, la calculer; - vérifier si la valeur de la limite est égal àf(x0). On rappelle que si une fonction dpvfest continue au point(x0,y0)alors toute restriction def à courbes continues qui passent pour le point(x0,y0)est continue au point(x0,y0). Donc une stratégie pour prouver que une fonctionfN"EST PAS CONTINUE au point(x0,y0) est trouver deux courbes continuesy=h1(x),y=h2(x)telles quey0=h1(x0)ety0=h2(x0) qui conduisent à deux valeurs différentes de la limite. La fonctionf(x,y)est continue surR2\ {0,0}parce que elle est quotient de polynômes. Pour montrer que elle est pas continue au point(0,0)on considére les axesx= 0ety= 0(qui évidement passent pour (0,0)) et on calculef(x,0)etf(0,y)(restriction defaux axes). On a pour toutx?= 0: f(x,0) =x2x 2= 1, et pour touty?= 0: f(0,y) =y2y 2=-1. La limite d"une constante est la constante, donc : lim x→0f(x,0) = 1etlimy→0f(0,y) =-1. Doncfn"admet pas de limite en(0,0)et elle ne peut pas être continue en(0,0). La fonctiong(x,y)est continue surR2\ {1,0}parce que elle est quotient de polynômes. Pour montrer que elle est continue au point(1,0)on utilise le théorème du pincement (dit aussi des gendarmes ou du sandwich). Dans le cas special dont on cherche une valeur nulle de la limite, ce théorème nous dit que il suffit majorer (en valeur absolue, au voisinage du point(1,0)) la fonctiongavec une fonction qui admet limite zero au même point. Attention : si la limite est non nulle, il ne suffit pas de montrer la majoration pour la valeur absolue deg!

A partir de la simple inégalité :

(x-1)2+y2≥y2, on a : 2 qui permet de encadrerg:

2|=|y|

1 entre la fonction nulle (qui a limite 0 pour toute valeur de(x,y)) et la fonction|y|( qui admet limite0pour toute(x,y)→(1,0)). On a démontré que : lim (x,y)→(1,0)y

3(x-1)2+y2= 0

et donc l"esemble de continuité degestR2. La fonctionh(x,y)est continue surR2\{0,0}parce que elle est quotient de fonctions continues. Comme on a fait pour la fonctionf, pour montrer que elle n"est pas continue au point(0,0)on cherche deux directions qui conduisent à deux limites différentes. On considèrey=xety=x2 ( qui passent pour(0,0)).

On trouve :

h(x,x) =xln(1 +x3)2x3 et h(x,x2) =ln(1 +x3)x

3(1 +x2).

On rappelle la limite usuelle :

lim t→0ln(1 +t)t = 1.

Cette limite usuelle se calcule en 1 passage si on écrit le polynôme de Taylor du dénominateur

au voisinage det= 0(essayer!). Par consequence en posantt=x3on a : lim x→0h(x,x) = limx→0xln(1 +x3)2x3= 0. et lim x→0h(x,x2) = limx→0ln(1 +x3)x

3(1 +x2)= 1.

Doncfn"admet pas de limite en(0,0)et elle ne peut pas être continue en(0,0). La fonctionk(x,y)est continue surR2\ {0,0}parce que elle est quotient de polynômes. Pour montrer que elle est continue au point(0,0)on utilise le théorème du pincement en suivante

exactement le même raisonnement que on a fait pour la fonctiong. A partir de la simple inégalité :

x

2+y2≥x2,

on a : 1x 2 qui permet de encadrerk:

0<|6x2yx

2|= 6|y|

entre la fonction nulle (qui a limite 0 pour toute valeur de(x,y)) et la fonction6|y|( qui admet limite0pour toute(x,y)→(1,0)). On a démontré que : lim (x,y)→(1,0)6x2yx

2+y2= 0

et donc l"esemble de continuité dekestR2. 2

Exercice 2.Soit

f(x,y) =( x2yx

4+y2(x,y)?= (0,0)

0sinon

Montrer que la restriction defà toute droite passante par(0,0)est continue, maisfn"est pas continue au point(0,0). Solution. Le but de l"exercise est de souligner que il suffit pas de montrer que une fonction est continue "restreinte sur le droites" pour déduire que elle est continue sur un point. Soity=mxune droite pour l"origine de coefficient angulairem. On trouve : f(x,mx) =mxx 2+m qui tend vers 0 si(x,y)→(0,0)pour toutm. De plus le longx= 0on trouve limite0.

Si on considère une paraboley=ax2on trouve :

lim (x,y)→(0,0)f(x,ax2) =a1 +a2 Et donc pour chaqueaon a une limite différente. Par consequence la limite n"existe pas. Exercice 3.Montrer que la fonctionf:R2\(0,0)→Rdéfinie par f(x,y) =sin(x2)-sin(y2)x 2+y2 n"est pas prolongeable par continuité en(0,0). Solution. On procède comme dans l"exercise 1. On considère cette fois les axesx= 0ety= 0, qui évidement passent pour(0,0). On a : f(x,0) =sin(x2)x

2etf(0,y) =-sin(y2)y

2

Dès que :

lim t→0sintt = 1 si on poset=x2out=y2on trouve que : lim x→0f(x,0) = 1etlimy→0f(0,y) =-1. Cela suffit pour dire que la limite en(0,0)n"existe pas et donc la fonction n"est pas prolongeable par continuitè en(0,0).

Exercice 4.Soitf:R2→Rdéfinie par

f(x,y) =¨ 12 (x2+y2)-1six2+y2>1 12 sinon

Montrer quefest continue.

Solution. Le termeg(x,y) =12

(x2+y2)-1est un polynôme et donc il est continue surR2. Pour prouver quefest continue il suffit vérifier que sur la circonférence {(x,y)?R2t.q.x2+y2= 1} le polynômeg(x,y)soit égal à-12 . Dès que : g(x,y)|{x2+y2=1}=12 (1)-1 =-12 la fonctionfest continue surR2. 3 Exercice 5.Prologer par continuité la fonction : f(x,y) =xyln(x2+y2) au point(0,0). Solution. On cherche de démontrer que notre fonction admet limite0lors que(x,y)→(0,0)à l"aide du théorème du pincement. A partir de la simple inégalité : (x+y)2≥0, on trouve |x2+y2| qui conduit à l"encadrement suivant : |(x2+y2)ln(x2+y2)|.

On rappelle la limite usuelle :

limt→0+tln(t) = 0. Si l"on poset= (x2+y2)on trouve que le terme de gauche admet limite0pour(x,y)→(0,0) et donc pour le théorème du pincement on a : lim (x,y→(0,0)f(x,y) = 0. La fonctionfadmet un prolongement par continuitéfdonné par :f(x,y) =¨f(x,y)si(x,y)?= (0,0)

0si(x,y) = (0,0)

Exercice 6.Dire si

f(x,y) =xy-2yx

2+y2-4x+ 4

est prolongeable par continuité au point(2,0). Solution. Comme d"habitude on commence en cherchant deux courbes qui passent pour le point (2,0)et conduisent à deux limites différentes. On essaye avecy= 0ety=x-2. On trouve : f(x,0) = 0etf(x,x-2) =-12 et donc lim(x,y→(2,0)f(x,0) = 0etlim(x,y→(2,0)f(x,x-2) =-12 La fonction n"est pas prolongeable par continuité au point(2,0)car la limite n"existe pas.

Exercice 7.Montrer que la fonction

f(x,y) = sin(xy2) admet limite0au point(0,0). Solution. Au voisinage de 0 on a l"inégalité usuelle : sin(t)< t. 4 Si l"on poset=xy2le théorème du pincement dit que la limite de f pour(x,y)→(0,0)est 0, car : etxy2tend vers 0 si(x,y)→(0,0). La fonctionfadmet un prolongement par continuitéfdonné par :f(x,y) =¨f(x,y)si(x,y)?= (0,0)

0si(x,y) = (0,0)

Exercice 8.Prolonger par continuité la fonction f(x,y) =sin(2x-2y)x-y sur la diagonale d"équationx=y.

Solution. On rappelle la limite usuelle :

lim t→0sin(t)t = 1. Si l"on poset=x-yon a quet→0six→y. Alors : lim x→ysin(2x-2y)x-y= limx→y2sin(2x-2y)2x-2y= 2. La fonctionfadmet un prolongement par continuitéfdonné par :f(x,y) =¨f(x,y)six?=y

2six=y

Exercice 9.En utilisant les coordonnées polaires montrer que la fonctionf(x,y)définie dans l"exercise 1 n"est pas continue au point(0,0). Solution. Il est souvent utile de passer aux cordonnées polaires pour simplifier le calcul d"une limite d"une fonction de deux variables. Tout point(x,y)?R2\(0,0)peut être represénté par ses cordonnées polaires centrées autour d"un point(x0,y0)grâce aux relations : x=x0+rcosθ y=y0+rsinθ avecr >0etθ?[0,2π[. On peut montrer que si lim r→0f(x0+rcosθ,y0+rsinθ) =l alors lim(x,y)→(x0,y0)f(x,y) =l. On considère la fonctionfdéfinie dans l"exercise 1 et on passe en polaires avecx0= 0,y0= 0.

On a :

lim(x,y)→(0,0)f(x,y) = limr→0f(rcosθ,rsinθ) = = lim r→0r

2(cos2θ-sin2θ)r

2(cos2θ-sin2θ)=

lim r→0(cos2θ-sin2θ) = cos2θ

Pour valeurs différentes decos2θon a une valeur limite différent donc la limite n"existe pas.

5quotesdbs_dbs29.pdfusesText_35
[PDF] prolongement par continuité exemple

[PDF] continuité sur un intervalle exercices corrigés

[PDF] continuité d'une fonction sur un intervalle exercice

[PDF] continuité d'une fonction cours

[PDF] étudier la continuité d'une fonction sur un intervalle

[PDF] limites et continuité cours

[PDF] choisir sa contraception

[PDF] pilule contraceptive

[PDF] methode contraceptive definition

[PDF] moyen de contraception femme

[PDF] contraception sans pilule

[PDF] des methodes de contraception

[PDF] contraception recherche

[PDF] les méthodes contraceptives avantages et inconvenients

[PDF] anti contraception