[PDF] FONCTION EXPONENTIELLE ET FONCTION LOGARITHME





Previous PDF Next PDF



01 - 2 Révisions danalyse Démonstrations

Théorème 1.11 : composée de fonctions admettant des limites de fonctions continues. Soient I et J des intervalles de



LIMITES DES FONCTIONS (Chapitre 2/2)

Méthode : Déterminer la limite d'une fonction composée Calculer la limite de la fonction f en . ... Démonstration dans le cas de la figure 1 :.



Chapitre 2 Continuité des fonctions réelles

Si une fonction admet l et l pour limites en un même point x0 alors l = l . Démonstration. Même principe que pour l'unicité de la limite d'une suite.



Chapitre 11 : Dérivation

21 janv. 2014 Une fonction f est dérivable en a si son taux d'accroissement en a admet une limite quand h tend vers 0. On appelle alors nombre dérivé de f ...



FONCTION EXPONENTIELLE ET FONCTION LOGARITHME

d'environ 5h. V. Limites de la fonction exponentielle. 1) Limites aux bornes. Propriétés : lim. ?Ÿ. = +? et lim. ?. = 0. Démonstration :.



Chapitre 3 Dérivabilité des fonctions réelles

Démonstration. Supposons f dérivable en x0 alors la limite lim x?x0 x=x0 f(x) ? f(x0) x ? x0 existe



FONCTION LOGARITHME NEPERIEN

Démonstration : La fonction ln est continue sur 0;+????? donc pour tout réel a > 0



Limites et continuité

La fonction f admet l pour limite en a si et seulement si elle admet l pour limite à gauche et à droite en a. Démonstration : Nous le démontrons pour une 



Terminale S - Limites de fonctions

( ) = +? alors par définition



ROC : dérivée dune fonction composée

Soit u une fonction dérivable sur un intervalle I soit f dérivable sur u(I). Soit a dans Il faut calculer la limite du taux d'accroissement.



[PDF] TS Limite dune fonction composée

TS Limite d'une fonction composée Plan du chapitre : I Théorème II Exemples d'utilisation directe III Limites par changement de variable



[PDF] Terminale S - Limites de fonctions - Parfenoff org

Limites de fonctions I) Limite et opérations 1) Limite d'une somme Si a pour limite: +? ?? +? Si a pour limite:



[PDF] LIMITES DUNE FONCTION - Christophe Bertault

Démonstration (i) Par l'absurde faisons l'hypothèse que f possède deux limites ? et ?? DISTINCTES Il existe alors un voisinage



[PDF] Limites de fonctions composées

31 jan 2011 · On a besoin d'étudier la limite en ( est un nombre réel ou l'infini) d'une fonction composée : f = v ° u Rien de plus simple si on se 



[DOC] Limite dune fonction composée - maths et tiques

Démonstration dans le cas de la figure 1 : donc tout intervalle m réel contient toutes les valeurs de f (x) dès que x est suffisamment grand soit : Or 



[PDF] LIMITES ET CONTINUITE (Partie 2) - maths et tiques

Méthode : Déterminer la limite d'une fonction composée Comme limite de fonctions composées on a lim Démonstration dans le cas de la figure 1 :



[PDF] 01 - 2 Révisions danalyse Démonstrations - cpgedupuydelomefr

01 : démonstrations 1 Fonctions réelles ou complexes de variable réelle : limites et continuité (Sup) Théorème 1 1 : unicité d'une limite en un point



Limite dune fonction composée Continuité et limite - Mathsbook

Au préalable je vais vous définir la notion de fonction composée pour ensuite vous montrer comment déterminer la limite d'une telle fonction



[PDF] Chapitre 2 Continuité des fonctions réelles

Si une fonction admet l et l pour limites en un même point x0 alors l = l Démonstration Même principe que pour l'unicité de la limite d'une suite



[PDF] Limites de fonctions - Lycée dAdultes

9 oct 2014 · 3 Limites des fonctions élémentaires 5 Limite d'une fonction composée limites nulles en +? et ?? pour les deux premières

  • Comment calculer la limite d'une fonction composée ?

    Pour calculer la limite d'une fonction composée, il suffit de calculer les limites « au fur et à mesure » en commen?nt par les limites des expressions « les plus intérieures ». u ( x ) = 2 + 1 x 2 et f ( x ) = x .
  • Comment démontrer la limite d'une fonction ?

    1La limite d'une fonction f correspond à la valeur vers laquelle se rapproche la fonction lorsque son argument se rapproche d'une certaine valeur.2Mathématiquement, on écrit.3? x ? a f ( x ) = l \\lim \\limits_{x \\to a} f(x) = l x?alimf(x)=l.4On dit que f tend vers l lorsque x tend vers a.
  • 6/ Continuité d'une fonction composée
    Si g est continue sur l et si f est continue sur g (l) alors est continue sur l .
1

FONCTION EXPONENTIELLE ET

FONCTION LOGARITHME

I. Définition de la fonction exponentielle

Propriété et définition : Il existe une unique fonction f dérivable sur ℝ telle que

et 0 =1. Cette fonction s'appelle fonction exponentielle et se note exp.

Conséquence : exp

0 =1 Avec la calculatrice, il est possible d'observer l'allure de la courbe représentative de la fonction exponentielle : Remarque : On verra dans le paragraphe II. que la fonction exponentielle est croissante. Mais sa croissance est très rapide, ainsi exp(21) dépasse le milliard. Pour des valeurs de x de plus en plus grandes, la fonction exponentielle prend des valeurs de plus en plus grandes. Propriété : La fonction exponentielle est strictement positive sur ℝ.

II. Étude de la fonction exponentielle

1) Dérivabilité

Propriété : La fonction exponentielle est dérivable sur ℝ et exp =exp

2) Variations

Propriété : La fonction exponentielle est strictement croissante sur ℝ.

En effet,

exp >0 car exp =exp>0.

3) Courbe représentative

On dresse le tableau de variations de la fonction exponentielle : x exp exp 0 2

III. Propriété de la fonction exponentielle

1) Relation fonctionnelle

Théorème : Pour tous réels x et y, on a : exp =expexp Remarque : Cette formule permet de transformer une somme en produit et réciproquement.

Corollaires : Pour tous réels x et y, on a :

a) exp ou encore expexp =1 b) exp c) exp exp avec ∈ℕ

Démonstration du a et b :

a) expexp =exp =exp0=1 b) exp =exp4+ 5 =expexp =exp

2) Le nombre e

Définition : L'image de 1 par la fonction exponentielle est notée e.

On a ainsi exp1=

Remarque : Avec la calculatrice, on peut obtenir une valeur approchée de e. 3

Notation nouvelle :

exp=exp ×1 exp1

On note pour tout x réel, exp=

Comme , le nombre e est un nombre irrationnel, c'est à dire qu'il s'écrit avec un nombre infini de décimales sa ns suite logique.

Ses premières décimales sont :

e ≈ 2,7182818284 5904523536 0287471352 6624977572 4709369995

9574966967 6277240766 3035354759 4571382178 5251664274...

Le nombre e est également un nombre transcendant. On dit qu'un nombre est tra nscendant s'il n'e st solution d'aucune équation à coefficients entiers.

Le nombre

2 par exempl e, est irrationnel mais n'est pas

transcendant puisqu'il est solution d e l'équat ion =2. Un tel nombre est dit "algébrique».

Le premier à s'intéresser de façon sérieuse au nombre e est le mathématicien suisse Leonhard

Euler (1707 ; 1783), ci-dessus. C'est à lui que nous devons le nom de ce nombre. Non pas qu'il

s'agisse de l'initiale de son nom mais peut être car e est la première lettre du mot exponentiel.

Dans " Introductio in Analysin infinitorum » publié en 1748, Euler explique que : =1+ Rappelons que par exemple 5! se lit "factorielle 5" et est égal à 1 x 2 x 3 x 4 x 5. Par cette formule, il obtient une estimation de e avec 18 décimales exactes. Nous devons aussi à Euler la démonstration de l'irrationalité de e. Avec cette nouvelle notation, on peut ainsi résumer l'ensemble des propriétés de la fonction exponentielle : Propriétés : Pour tous réels x et y, on a : a) =1 et b) >0 et c) , avec ∈ℕ. Méthode : Dériver une fonction exponentielle

Vidéo https://youtu.be/XcMePHk6Ilk

Dériver les fonctions suivantes :

a) =4-3 b) -1 c) ℎ a) ′ =4-3 b) ()=1× -1 4 c) ℎ′

Méthode : Simplifier les écritures

Vidéo https://youtu.be/qDFjeFyA_OY

Simplifier l'écriture des nombres suivants :

0 0 Propriétés : Pour tous réels a et b, on a : a) b) Méthode : Résoudre une équation ou une inéquation

Vidéo https://youtu.be/dA73-HT-I_Y

Vidéo https://youtu.be/d28Fb-zBe4Y

a) Résoudre dans ℝ l'équation =0. b) Résoudre dans ℝ l'inéquation ≥1. a) =0 -3=-2 +2-3=0

Δ=2

-4×1× -3 =16

Donc =

!2 =-3 ou = ,(3 !2 =1

Les solutions sont -3 et 1.

2 0 +1 0 5 b) ≥1 ⟺4-1≥0 4

L'ensemble des solutions est l'intervalle M

;+∞M. Méthode : Étudier une fonction exponentielle

Vidéo https://youtu.be/_MA1aW8ldjo

Soit f la fonction définie sur ℝ par +1 a) Calculer la dérivée de la fonction f. b) Dresser le tableau de variations de la fonction f. c) Déterminer une équation de la tangente à la courbe au point d'abscisse 0. d) Tracer la courbe représentative de la fonction f en s'aidant de la calculatrice. a) +1 +2 b) Comme >0, () est du signe de +2. f est donc décroissante sur l'intervalle -∞;-2 et croissante sur l'intervalle -2;+∞

On dresse le tableau de variations :

x -∞ -2 +∞ () - 0 + c) 0 =1 et ′ 0 =2 Une équation de la tangente à la courbe en 0 est donc : = 0 -0 +(0), soit : =2+1 d) 6

IV. Fonctions de la forme ⟼

1) Variations

Propriété :

La fonction ⟼

45
, avec ∈ℝ∖ 0 , est dérivable sur ℝ. Sa dérivée est la fonction 45

Démonstration :

On rappelle que la dérivée d'une fonction composée ⟼ est

En considérant

5 , = et =0, on a : 45
45

Exemple :

Soit

)/5 alors ′ =-4 )/5

Propriété :

Si k > 0 : la fonction ⟼

45
est strictement croissante.

Si k < 0 : la fonction ⟼

45
est strictement décroissante.

Démonstration :

On a :

45
45

Or,

45
>0 pour tout réel t et tout entier relatif k non nul. Donc le signe de la dérivée ⟼ 45
dépend du signe de k. Si k > 0 alors la dérivée est strictement positive est donc la fonction ⟼ 45
est strictement croissante. Si k < 0 alors la dérivée est strictement négative est donc la fonction ⟼ 45
est strictement décroissante.

2) Représentation graphique

Méthode : Étudier une fonction ⟼ 45
dans une situation concrète

Vidéo https://youtu.be/lsLQwiB9Nrg

Suite à une infection, le nombre de bactéries contenues dans un organisme en fonction du temps (en heures) peut être modélisé par la fonction f définie sur [0 ; 10] 7 et telle que =0,14().

1) Montrer que la fonction f définie sur [0 ; 10] par

%,&/5 convient.

2) On suppose que

0 =50000. Déterminer A.

3) Déterminer les variations de f sur [0 ; 10].

4) a) À l'aide de la calculatrice, donner un arrondi au millier près du nombre de

bactéries après 3h puis 5h30. b) À l'aide de la calculatrice, déterminer au bout de combien de temps le nombre de bactéries a-t-il doublé. Arrondir à l'heure près.

1)

()=×0,14 %,&/5 =0,14× %,&/5 =0,14().

La fonction f définie sur [0 ; 10] par

%,&/5 vérifient bien l'égalité ()=0,14() donc elle convient.

2)

0

Donc, si

0 =50000, on a : =50000.

Une expression de la fonction f est donc :

=50000 %,&/5

3) Comme =0,14>0, on en déduit que la fonction ⟼

%,&/5 est strictement croissante sur [0 ; 10]. Il en est de même pour la fonction f.

4) a)

3 =50000 =50000 ≈76000 5,5 =50000 =50000 %,77 ≈108000 Après 3h, l'organisme contient environ 76 000 bactéries. Après 5h30, l'organisme contient environ 108 000 bactéries. b) Le nombre de bactéries a doublé à partir de 100 000 bactéries, soit au bout d'environ 5h.

V. Limites de la fonction exponentielle

1) Limites aux bornes

Propriétés :

lim #→'9 =+∞ et lim #→)9 =0

Démonstration :

Vidéo https://youtu.be/DDqgEz1Id2s

8 - La suite est une suite géométrique de raison >1.

Donc, on a : lim

"→'9 Si on prend un réel quelconque (aussi grand que l'on veut), il exsite un rang partir duquel tous les termes de la suite dépassent , soit : La fonction exponentielle étant strictement croissante, on a également, pour tout

Donc, pour tout >

, on a :

Ainsi, tout intervalle

quotesdbs_dbs45.pdfusesText_45
[PDF] trouver ses marques

[PDF] trouver ses repères définition

[PDF] prendre ses marques définition

[PDF] prendre ses repères definition

[PDF] reprendre ses marques expression

[PDF] soit la fonction f définie sur r par f(x) = x/(1+x2)

[PDF] soit f la fonction définie sur r par f(x)=x^3

[PDF] soit f la fonction définie sur r par f x )= x ln x 2 1

[PDF] soit f la fonction définie sur r par f(x)=x-ln(x2+1)

[PDF] slogans publicitaires cultes

[PDF] soit f la fonction définie sur r+ par f(x)=3x-1/x+1

[PDF] le sol est une ressource fragile

[PDF] soit f la fonction définie sur r par f(x)=2x

[PDF] menaces qui pèsent sur le sol

[PDF] soit f la fonction définie sur r par f(x)=x^3-x^2