[PDF] Fonctions de deux variables Le graphe Grf d'une





Previous PDF Next PDF



Fonctions de deux variables

Le graphe Grf d'une fonction f de deux variables c'est une partie de R3



z = f (x

y) 



Chapitre 3 Dérivabilité des fonctions réelles

ce qui montre que f est continue en x0. La réciproque est fausse. Par exemple la fonction f : x ??





EQUATIONS DIFFERENTIELLES I Définition et notation

4. y' = y+ y². Contre-exemple : y' = sin(xy). Méthode générale de résolution. • L'équation s'écrit : y'g(y) = f(x) avec f et g deux fonctions d'une variable 



Corrigé du TD no 11

J. Gillibert. Corrigé du TD no 11. Exercice 1. Soient f et g deux fonctions continues R ? R. On suppose que : ?x ? Q f(x) = g(x). Montrer que f = g.



Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et

est linéaire et son noyau E est un sous-espace vectoriel de C1. Exercice 10 : Montrer que l'ensemble F des triplets (x y





DÉRIVATION

Exemple : On considère la fonction trinôme f définie sur R par f (x) = x2 + 3x ?1. Page 2. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.



Chapitre 1 - Fonctions de plusieurs variables. Limites dans R

Exercice 3. Calculer la dérivée de l'application f : (x y) ?? x2 ? y2 au point a = (1



Intégrales de fonctions de plusieurs variables

f(x)dx — mesure l'aire de la région du plan située entre l'axe des abscisses et le graphe de f f (x)g(x)+f(x)g (x) dx = f(b)g(b)?f(a)g(a). Exemple.



Fonctions de plusieurs variables

1 nov. 2004 Exemple 1.1 f(x y) = x2 + y2. 1.2 Différentiabilité d'une fonction de deux variables. Définition 1.2 Soit f une fonction de deux variables



[PDF] Chapitre 3 Dérivabilité des fonctions réelles

– une fonction affine f : x ?? ax + b est partout dérivable et f (x0) = a pour tout x0 Voici deux exemples bien connus Exemples a) Soit n ? 1 un entier 



[PDF] Fonctions de deux variables

Pour calculer la premi`ere dérivée partielle on consid`ere y comme un param`etre et on dérive comme d'habitude Exemple Posons f := (xy) ?? xy + y2 + cosxy 



[PDF] Dérivation des fonctions

La droite T d'équation y = f (x0) + f (x0)(x ? x0) est la tangente à la courbe x f(x) 1 1 • Exemple 1 11 (Fonctions non dérivables en un point)



[PDF] DÉRIVATION - maths et tiques

Exemple : Soit la fonction f définie sur R par f (x) = x2 ? 4x Pour tout x réel on a : f '(x) = 2x ? 4 Résolvons l'équation f '(x) ? 



[PDF] Cours/Exercices/Corrections Équations Fonctionnelles Groupe B

6 déc 2020 · Voici un exemple d'équation fonctionnelle : Trouver f : R ? R tel que pour tout x y ? R f(x + y) = f(y) + x



[PDF] Equation dune tangente - lycee-valin

Ainsi l'ordonnée du point M est la somme de l'ordonnée f(a) de A et de la variation d'ordonnée f?(a)(x - a) entre A et M soit y = f(a) + f?(a)(x - a)



[PDF] Résumé de cours et méthodes 1 Nombre dérivé - Fonction dérivée

f qui à tout a de I associe f (a) le nombre dérivé de f en a Exemple : Soit f définie sur R par f(x) = x2 Pour tout a lim h?0 f(a+h)? f(a)



[PDF] Continuité et dérivabilité dune fonction - Lycée dAdultes

7 nov 2014 · La fonction f est une fonction continue sur R car f est un polynôme La fonction f est la somme de deux fonctions crois- santes x ?? x 3 et x 



[PDF] Équation des tangentes et approximation affine - fadagogocom

y = f(a)+f'(a)(x-a) Exemple 1 : Quelle est l'équation de la tangente à la courbe y = xex qui passe par le point (1 e) ? On a f(x) = xex donc f'(x) 



[PDF] Thème 15: Dérivée dune fonction les règles de calcul

Exercice 15 5: On considère la fonction f (x) = x2 + 2x – 8 a)Calculer sa dérivée b)Déterminer la pente de la tangente à la courbe y = f (x) au

:

Fonctions de deux variables

D´edou

Mai 2011

D"une `a deux variables

Les fonctions mod`elisent de l"information d´ependant d"un param`etre. On a aussi besoin de mod´eliser de l"information d´ependant de plusieurs param`etres, et c"est ce que font les fonctions de plusieurs variables. Ce qu"on sait faire pour les fonctions d"une variable s"´etend dans une certaine mesure aux fonctions de plusieurs variables comme on va le voir.

Exemple de fonctions de deux variables

Comme les fonctions d"une variable, celles de deux variables s"´ecrivent avec "?→". En voici une :d:= (x,y)?→ |x-y|. Je l"appelledparce que d(x,y) est la distance entrexety. En voici une autre :p:= (R,R?)?→RR?R+R?. C"est la fonction qui donne la r´esistance d"un montage en parall`ele de deux r´esistances. C"est pour ¸ca que j"ai appel´e les variablesRetR?, mais j"aurais aussi bien pu ´ecrire la mˆeme fonction (x,y)?→xyx+y.Exo 1 Donnez votre exemple favori de fonction de deux variables.

Domaine de d´efinition

Certaines fonctions sont d´efinies pour toutes les valeurs des (deux) variables mais d"autres non. On va dire que les fonctions de deux variables sont les applications deR2dansR?, ce qui permet de d´efinir le domaine de d´efinition par la formule :

DDf:={(x,y)?R2|f(x,y)?=?}.Exemple

Posonsf:= (x,y)?→ln(x-y2)-2?y-x2.

C"est une partie du plan et ¸ca se dessine.Exo 2

Dessinez le domaine de d´efinition de

f:= (x,y)?→xln(x+y)-y⎷y-x.

Graphe

Le grapheGrfd"une fonctionfde deux variables, c"est une partie deR3, `a savoir :

Grf:={(x,y,z)?R3|z=f(x,y)}.Exemple

a) Le graphe de (x,y)?→x+y+ 1 est le plan passant par (0,0,1),(1,0,2) et (0,1,2). b) Le graphe de (x,y)?→?1-x2-y2est "l"h´emisph`ere nord" de la sph`ere unit´e.Ca se dessine ou se visualise.

D´eriv´ees partielles

Pour une fonction de deux variables, il y a deux d´eriv´ees, une "par rapport `ax" et l"autre "par rapport `ay". Les formules sont (`a gauche la premi`ere, `a droite la seconde) : (a,b)?→(x?→f(x,b))?(a) (a,b)?→(x?→f(a,x))?(b). La premi`ere est not´eef?xou parfois∂f∂xet la seconde est not´eef?y ou parfois ∂f∂y. On a donc f ?x(a,b) = (x?→f(x,b))?(a)f?y(a,b) = (x?→f(a,x))?(b).

Calcul de la premi`ere d´eriv´ee partielle

Pour calculer la premi`ere d´eriv´ee partielle, on consid`ereycomme un param`etre et on d´erive comme d"habitude.Exemple

Posonsf:= (x,y)?→xy+y2+ cosxy.On a

f ?x(x,y) =y-ysinxy.Exo 3

Calculezf?x(x,y) pourf:= (x,y)?→xy2-y+exy.

Calcul de la seconde d´eriv´ee partielle

Pour calculer la seconde d´eriv´ee partielle, on consid`erexcomme un param`etre et on d´erive "eny".Exemple

Posonsf:= (x,y)?→xy+y2+ cosxy.On a

f ?y(x,y) =x+ 2y-xsinxy.Exo 4

Calculezf?y(x,y) pourf:= (x,y)?→xy2-y+exy.

Le gradient

Si on met les deux d´eriv´ees partielles ensemble, on obtient le gradientdef, qu"on note?f, ce qui se lit aussi "nablaf" :

Posonsf:= (x,y)?→xy+y2.On af?x(x,y) =yet

f ?y(x,y) =x+ 2y. Le gradient defau point (3,10) est donc (10,23).Exo 5 Calculez le gradient def:= (x,y)?→xey-3yx2en (1,1).

Le dessin du gradient

Le gradient?f(M) defau pointMest un ´el´ement deR2qu"on voit comme un vecteur. Et ce vecteur, on est libre de le voir o`u on veut : alors on fait le choix des physiciens qui consiste `a voir l"origine de ce gradient enM. Ainsi, quandMvarie, on a un gradient en chaque point. Les physiciens disent que le gradient d"une fonction est un "champ" de vecteurs.Exemple Pourf:= (x,y)?→x2+ 2y2, on a?f(2,1) = (4,4) et ¸ca se dessine.Exo 6

Pourf:= (x,y)?→xy-y2, dessinez?f(1,1).

Le sens du gradient

A une variable, la d´eriv´ee dit dans quel sens varie la fonction et `a quelle vitesse : plus la d´eriv´ee est grande, plus la fonction augmente ("en premi`ere approximation"). A deux variables, le gradient pointe dans la direction o`u la fonction augmente le plus, et plus il est long, plus la fonction augmente ("en premi`ere approximation").

Points critiques

On a compris qu"une fonction d´erivable d"une variable atteint ses bornes l`a o`u sa d´eriv´ee s"annule (ou au bord de son DD). A deux variables c"est pareil, sauf que la d´eriv´ee est remplac´ee par le gradient.D´efinition Les points critiques d"une fonctionfde deux variables sont les points o`u son gradient s"annule.

Points critiques : exemples

Exemple

Les points critiques def:= (x,y)?→x3-3x+y2sont ceux qui v´erifient les deux ´equations 3x2-3 = 0 et 2y= 0. On trouve deux points critiques : (1,0) et (-1,0).Exo 7 Trouver les points critiques def:= (x,y)?→x2-4x+y3-3y.

Courbes de niveau

Les courbes de niveau d"une fonctionfde deux variables sont les lieux o`ufest constante, il y en a une par valeur prise : Niv c:={M?R2|f(M) =c}.Exemple Pourf:= (x,y)?→x2+y2, etcpositif, la courbe de niveaucest le cercle de rayon⎷ccentr´e en l"origine.

Courbe de niveau par un point

SiAest un point du domaine de d´efinition def, il y passe une courbe de niveau def, celle de niveauf(A). L"´equation de la courbe de niveau defpassant parAest f(M) =f(A).Exemple Pourf:= (x,y)?→x2+y2, etA:= (3,4), l"´equation de la courbe de niveau passant parAestx2+y2= 25 , c"est donc le cercle de rayon 5 centr´e en l"origine.Exo 8 Pour la mˆeme fonction, quelle est la courbe de niveau passant par (1,2)?

Courbe de niveau et gradient

L`a o`u le gradient est non nul, il est perpendiculaire `a la courbe de niveau. Autrement dit, la tangente `a la courbe de niveau est perpendiculaire au gradient. "Pour monter (ou descendre) le plus vite, il faut partir perpendiculairement `a la courbe de niveau".Exemple Pourf:= (x,y)?→x2+y2, etA:= (3,4), la courbe de niveau passant parAest le cercle de rayon 5 centr´e en l"origine. Et on a ?f(3,4) = (6,8), qui est bien proportionnel au rayon.

Plan tangent au graphe

Pour une fonction d´erivablefd"une variable, on se rappelle que l"´equation de la tangente au graphe au point (a,f(a)) est y=f(a) + (x-a)f?(a). Sifest `a deux variables, c"est presque pareil, l"´equation du plan tangent au point (a,b,f(a,b)) est z=f(a,b) + (x-a)f?x(a,b) + (y-b)f?y(a,b).Exemple Pourf:= (x,y)?→x2+y2, etA:= (3,4), l"´equation du plan tangent est z= 25 + 6(x-3) + 8(y-4).

Approximation lin´eaire

Pour une fonction d´erivablefd"une variable, on se rappelle que l"approximation lin´eaire au pointaest la fonction dont le graphe est la tangente, `a savoir : x?→f(a) + (x-a)f?(a). Sifest `a deux variables, c"est presque pareil, l"approximation lin´eaire au point (a,b) est la fonction dont le graphe est le plan tangent, `a savoir : (x,y)?→f(a,b) + (x-a)f?x(a,b) + (y-b)f?y(a,b).Exo 9 Calculez l"approximation lin´eaire def:= (x,y)?→x2+y2en

A:= (3,4).

D´eriv´ees partielles sup´erieures

Pour faire des approximations quadratiques et autres, il faut des d´eriv´ees sup´erieures. Bien entendu, on peut par exemple d´eriver deux fois, et ce de quatre fa¸cons. Ces quatre d´eriv´ees sont not´eesf??x2,f??xy,f??yx,f??y2sauf que les deux du milieu sont toujours ´egales, donc on n"´ecrit jamaisf??yx.Exo 10 Calculezf??xyetf??yxpourf:= (x,y)?→exy+xsiny.

Extrema

Soitfune fonction d´erivable sur un rectangle;alorsfatteint son maximum et son minimum soit sur le bord du

rectangle, soit en des points critiques.Exemple On consid`ere la fonctionf:= (x,y)?→x2+y2-2x-4ysur le On af(x,y) = (x-1)2+ (y-2)2-5. On voit qu"elle atteint son maximum en (3,5) qui est sur le bord du rectangle, et son minimum (-5) en (1,2) qui est un point critique.Exo 11

Trouver le maximum et le minimum de la fonction

f:= (x,y)?→x2+y2-3x-3ysur le rectangle d´efini par les deux

Interm`ede : mauvaise foi

On a dit :

Sifest une fonction d´erivable sur un rectangle, alorsfatteint son maximum et son minimum soit sur le bord du rectangle, soit en des points critiques.Exo 12 Donner une interprˆetation fausse (et de mauvaise foi!) de cet

´enonc´e.

Extrema sur le bord

Soitfune fonction d´erivable sur un rectangle.On trouve les extrema defsur le bord du rectangle en examinant

les quatre cˆot´es, et en gardant le meilleur de ce qu"on trouve.Exemple On consid`ere la fonctionf:= (x,y)?→xy2-xy+x3ysur le Cette fonction est nulle sur deux des quatre cˆot´es du rectangle. Sur le bord d"en haut, on a la fonctionx?→2x+ 2x3qui est croissante et varie de 0 `a 4. Sur le bord de droite, on a la fonction y?→y2qui est croissante et varie de 0 `a 4. Donc, sur le bord le minimum de la fonction est 0 et son maximum est 4.

Extrema tout court : exemple

Exemple

On consid`ere encore la fonctionf:= (x,y)?→xy2-xy+x3ysur Sur le bord le minimum de la fonction est 0 et son maximum est 4. Pour trouver le minimum de cette fonction sur tout le rectangle, on calcule ses points critiques, qui sont d´efinis par y

2-y+ 3x2y= 2xy-x+x3= 0.En dehors des axes, on trouve

y+ 3x2= 1 et 2y+x2= 1 En r´esolvant ce syst`eme, on trouve, dans notre rectangle, le point critique ( 25
,1⎷5 En ce point,fprend la valeur n´egative10⎷5-42125 ⎷5 qui est donc son minimum.

Extrema tout court : exercice

Exo 13

Calculer le maximum et le minimum de

f:= (x,y)?→2xy2-xy+x3ysur le mˆeme rectangle d´efini par lesquotesdbs_dbs45.pdfusesText_45
[PDF] comment appelle t on l'eau ? l'état gazeux

[PDF] la cene leonard de vinci

[PDF] leonard de vinci philosophe

[PDF] film de leonard de vinci

[PDF] comment est mort leonard de vinci

[PDF] qu'est ce qu'un mauvais conducteur en physique

[PDF] les gaz rares chimie

[PDF] quelles sont les molécules formées par les atomes de gaz nobles

[PDF] g(x)=e^x-x-1 etudier les variations de la fonction g

[PDF] h(x)=(-x-1)e^-x

[PDF] f(x)=x+1+x/e^x

[PDF] carnet de bord voyage scolaire rome

[PDF] dossier pédagogique voyage rome

[PDF] donner les valeurs de u(1) et u(4)

[PDF] calculer u1 u2 u3 u4