[PDF] EQUATIONS DIFFERENTIELLES I Définition et notation





Previous PDF Next PDF



Fonctions de deux variables

Le graphe Grf d'une fonction f de deux variables c'est une partie de R3



z = f (x

y) 



Chapitre 3 Dérivabilité des fonctions réelles

ce qui montre que f est continue en x0. La réciproque est fausse. Par exemple la fonction f : x ??





EQUATIONS DIFFERENTIELLES I Définition et notation

4. y' = y+ y². Contre-exemple : y' = sin(xy). Méthode générale de résolution. • L'équation s'écrit : y'g(y) = f(x) avec f et g deux fonctions d'une variable 



Corrigé du TD no 11

J. Gillibert. Corrigé du TD no 11. Exercice 1. Soient f et g deux fonctions continues R ? R. On suppose que : ?x ? Q f(x) = g(x). Montrer que f = g.



Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et

est linéaire et son noyau E est un sous-espace vectoriel de C1. Exercice 10 : Montrer que l'ensemble F des triplets (x y





DÉRIVATION

Exemple : On considère la fonction trinôme f définie sur R par f (x) = x2 + 3x ?1. Page 2. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.



Chapitre 1 - Fonctions de plusieurs variables. Limites dans R

Exercice 3. Calculer la dérivée de l'application f : (x y) ?? x2 ? y2 au point a = (1



Intégrales de fonctions de plusieurs variables

f(x)dx — mesure l'aire de la région du plan située entre l'axe des abscisses et le graphe de f f (x)g(x)+f(x)g (x) dx = f(b)g(b)?f(a)g(a). Exemple.



Fonctions de plusieurs variables

1 nov. 2004 Exemple 1.1 f(x y) = x2 + y2. 1.2 Différentiabilité d'une fonction de deux variables. Définition 1.2 Soit f une fonction de deux variables



[PDF] Chapitre 3 Dérivabilité des fonctions réelles

– une fonction affine f : x ?? ax + b est partout dérivable et f (x0) = a pour tout x0 Voici deux exemples bien connus Exemples a) Soit n ? 1 un entier 



[PDF] Fonctions de deux variables

Pour calculer la premi`ere dérivée partielle on consid`ere y comme un param`etre et on dérive comme d'habitude Exemple Posons f := (xy) ?? xy + y2 + cosxy 



[PDF] Dérivation des fonctions

La droite T d'équation y = f (x0) + f (x0)(x ? x0) est la tangente à la courbe x f(x) 1 1 • Exemple 1 11 (Fonctions non dérivables en un point)



[PDF] DÉRIVATION - maths et tiques

Exemple : Soit la fonction f définie sur R par f (x) = x2 ? 4x Pour tout x réel on a : f '(x) = 2x ? 4 Résolvons l'équation f '(x) ? 



[PDF] Cours/Exercices/Corrections Équations Fonctionnelles Groupe B

6 déc 2020 · Voici un exemple d'équation fonctionnelle : Trouver f : R ? R tel que pour tout x y ? R f(x + y) = f(y) + x



[PDF] Equation dune tangente - lycee-valin

Ainsi l'ordonnée du point M est la somme de l'ordonnée f(a) de A et de la variation d'ordonnée f?(a)(x - a) entre A et M soit y = f(a) + f?(a)(x - a)



[PDF] Résumé de cours et méthodes 1 Nombre dérivé - Fonction dérivée

f qui à tout a de I associe f (a) le nombre dérivé de f en a Exemple : Soit f définie sur R par f(x) = x2 Pour tout a lim h?0 f(a+h)? f(a)



[PDF] Continuité et dérivabilité dune fonction - Lycée dAdultes

7 nov 2014 · La fonction f est une fonction continue sur R car f est un polynôme La fonction f est la somme de deux fonctions crois- santes x ?? x 3 et x 



[PDF] Équation des tangentes et approximation affine - fadagogocom

y = f(a)+f'(a)(x-a) Exemple 1 : Quelle est l'équation de la tangente à la courbe y = xex qui passe par le point (1 e) ? On a f(x) = xex donc f'(x) 



[PDF] Thème 15: Dérivée dune fonction les règles de calcul

Exercice 15 5: On considère la fonction f (x) = x2 + 2x – 8 a)Calculer sa dérivée b)Déterminer la pente de la tangente à la courbe y = f (x) au

:

ENIHP1Equations différentielles p. 1

EQUATIONS DIFFERENTIELLES

I Définition et notation

Définition 1: On appelle dérivée seconde de f''(x) la dérivée de f'(x), elle même dérivée de f(x). On

définit ainsi la dérivée d'ordre n de f, notée f(n).

Définition 2 : Une équation différentielle d'ordre n est une équation où l'inconnue est une fonction f(x) et

qui fait intervenir la dérivée d'ordre n de f et éventuellement x, f(x) et les dérivées intermédiaires.

Exemple : Equation différentielle du 1er ordre :

Equation différentielle du 2nd ordre :

Notation En écriture différentielle, on note f'(x)= En fait, pour simplifier l'écriture des équations différentielles: ·les fonctions sont souvent symbolisées par des lettres:x, a, y pour x(t), a(t), y(t)

·la variable est notée soit t soit x: y et a seront interprétés comme y(t), a(t) ou y(x), a(x)

·on peut être mené à utiliser l'écriture différentielle: y'= ou y'= et y''=

Exemple : Réécrire de façon simplifiée les équations différentielles précédentes :

Exemples d'équations différentielles

·L'équation y' =a y modélise l'évolution de n'importe quelle quantité y dont la variation instantanée est

proportionnelle à y.

·En physique, comme : (1) L + R i = e(t)

· En chimie, comme: (2) =kc et =k(a-x)(b-x) (cinétique de premier et deuxième ordre) ·En dynamique de population : (3) =kP(K-P) (croissance d'une population en condition limitée)

·En médecine: (4) =-kQ+Dtk

aaek- (concentration plasmatique d'un médicament) Le problème est alors de trouver les fonctions i(t), c(t) ... vérifiant l'équation.

Définitions :

·Résoudre une équation différentielle d'ordre n sur un intervalle I, c'est trouver toutes les

fonctions dérivables n fois sur I solution de l'équation. ·Quand ces solutions ont toutes la même forme, k ´ex par exemple avec k réel quelconque, on peut

donner cette forme générale appelée solution générale de l'équation (seul k varie d'une solution

à l'autre).

Remarque : Dans les cas simples du type y'= g(x), les solutions sont toutes les primitives de g(x).

ENIHP1Equations différentielles p. 2

II Equations à variables séparables

Il s'agit des équations où on peut séparer ce qui concerne y, y', ... d'un côté de l'équation et ce qui

concerne x de l'autre.

Exemples

1. y'y = 1 2. y'y² = x 3. y'= y² 4. y' = y+ y²

Contre-exemple : y' = sin(xy)

Méthode générale de résolution

·L'équation s'écrit :

y'g(y) = f(x) avec f et g deux fonctions d'une variable.

·Si on connait une primitive G de g, et une primitive F de f, alors l'équation équivaut à

G(y) = F(x) + C

Une fonction f, définie sur un intervalle I, est solution de l'´equation différentielle si et seulement si il

existe une constante C telle que pour tout x dans I, on a G(f(x)) = F(x) + C Exemple : Résoudre si cela est possible les équations 1 à 4 par cette méthode.

Remarque : Attention, il ne suffit pas de mettre les y y' à gauche et les x à droite, il faut que la partie

gauche soit vraiment sous forme y0g(y). Par exemple, l'équation 3 pourrait s'écrire y' - y = 0, on a bien

les y' à gauche, mais ça n'est pas sous la bonne forme, on ne sait pas résoudre ainsi (il n'y a pas de

formule générale pour une primitive de y' - y).

ENIHP1Equations différentielles p. 3

III EQUATIONS DIFFERENTIELLES LINEAIRES

DU PREMIER ORDRE a(t) x' + b(t) x = c(t)

1/ Définitions

Définition 1: Soit un intervalle I de ℝ et a(t), b(t) et c(t) trois fonctions continues sur I .

Soit une fonction y(t): I®Ë

On dit que y est une solution de l'équation différentielle linéaire de premier ordre: (E) ay'+by=c ssi :

·y est dérivable sur I

· pour tout t de I, y vérifie (E).

On note SI l'ensemble des solutions de (E) sur I.

Définition 2:

-Résoudre (E) sur I c'est trouver toutes les solutions sur I. -On appelle courbe intégrale de E les courbes représentatives des solutions de (E). -L'équation (E) y'+by=c où a=1 est dite normalisée. -L'équation (E0) ay'+by=0 est appelée équation sans second membre.

2/ Solution générale de l'équation différentielle sans second membre ay' + by = 0

Théorème : Soit l'équation différentielle y' + ay = 0 avec a une fonction continue sur I. La solution

générale de cette équation sur I est : y0 = k ´e-A(t) où A(t) est une primitive de a(t) sur I et k un réel quelconque.

Démonstration:

Remarque 1: Si l'équation initiale est de la forme ay'+by=0, on divise l'équation par a(t) pour a(t) non

nul et on retrouve y'+y=0. On cherche alors une primitive de . Remarque 2: Si a est un réel, on a immédiatement la solution générale ke-at

Exemple : Résoudre sur ℝ: (E1) x' -2 x = 0 (E3) y'+xy= 0et sur ]0;+∞[ (E3) xy'-y=0

ENIHP1Equations différentielles p. 4

2/ Résolution de l'équation avec second membre

Théorème : La solution générale de l'équation différentielle (E) ay' + by = c s'obtient en ajoutant à la

solution générale de l'équation sans second membre (E0) ay' +by = 0 une solution particulière de

l'équation (E).

Démonstration:

Exemple : Résoudre (E4) y' -2 y = 1-2x et (E5) y' -2 y = e-x ( sol. part. de la forme: le-x)

ENIHP1Equations différentielles p. 5

3/ Méthode de variation de la constante

Méthode de variation de la constante:

Etape 1 : Trouver la solution générale de (E0) a(t) x' + b(t) x = 0, soit y0= k e-G(t)

Etape 2 : Pour trouver une solution particulière f de (E) on pose f(t) = z(t) e-G(t) (on remplace

la constante k par une fonction z(t)) et on recherche f(t) solution particulière de (E). On remplace alors

f et f' par cette fonction dans (E) et on détermine z(t). On a f' = (z'(t) - z(t) G'(t)) e-G(t) .

Etape 3 : La solution générale de (1) est alors y = k e-G(t) + f(t) avec k réel Exemple : Résoudre (E6) y' + x y =x² e-x

4/ Problème de cauchy

Une fois la solution générale de l'équation différentielle déterminée, il est souvent nécessaire de trouver

la solution y vérifiant certaines conditions initiales. Cette recherche est appelé le problème de Cauchy.

Théorème: Soit I un intervalle de

ℝ. a et b deux fonctions continues sur I. Il existe une solution et une seule vérifiant l'e.d. y'+ay=b et y(x0)=y0

Exemple : Trouver la solution de (E3) vérifiant y(0)=1 et la solution de (E6) vérifiant y(0)=-1

ENIHP1Equations différentielles p. 6

4/ Courbe intégrale

Construction d'un champ

de tangente : y'= y - x

Construction d'une solution particulière: Le champ de tangentes d'une équation différentielle est

représenté ci-dessous. Tracer les courbes intégrales vérifiant la solution particulière y(0)=- puis y(0)= 3.

Exemple de champs de tangente avec courbes intégrales y'= y'=x Exemple : Courbes intégrales d'une équation différentielle y'=ay+b, a et b constants

ENIHP1Equations différentielles p. 7

III Equations Linéaires du second ordre à coefficients constants: ay''+by'+cy = d

On cherche à résoudre sur I les e.d. ay''+by'+cy=d avec a,b,c trois réels et d une fonction continue sur I.

1/ Résolution de l'équation sans second membre

Propriété: Soit l'équation (E0) ay''+by'+cy=0, a,b et c trois réels.

On appelle équation caractéristique de cette équation différentielle l'équation : al²+bl+c=0

Trois cas sont possibles:

-Si D>0, on note l1 et l2 les racines du polynôme.

La solution générale de (E0) est alors :

xxeCeC2121 ll+, C1 et C2 étant 2 réels -Si D=0, on note l0 la racine double du polynôme.

La solution générale de (E0) est alors :

xeCxC0)(21 l+, C1 et C2 étant 2 réels -Si D<0, on note a+ib et a-ib les 2 racines complexes du polynôme.

La solution générale de (E0) est alors : xexCxCabb))sin()cos((21+, C1 et C2 étant 2 réels

Démonstration:

ENIHP1Equations différentielles p. 8

Exemples: Résoudre (E1) y''+3y'+2y=0 (E2) y''+2y'+y=0(E3) y''+y'+y=0

2/ Solution de l'équation différentielle avec second membre.

Propriété: La solution générale de l'équation : ay''+by'+cy=d, avec a,b,c réels et d une fonction continue sur I

est la somme d'une solution particulière de (E) et de la solution générale de l'équation sans second

membre: ay''+by'+cy=0

3/ Problème de Cauchy

Théorème: L'équation ay''+by'+cy=d possède une unique solution vérifiant la condition initiale:

y(x0)=y0 et y'(x0)=y'0 Exemple: Résoudre y''+y=x²+2 avec y(0)=0 et y ' (0)=0

ENIHP1Equations différentielles p. 9

IV Résolution approchée d'une équation différentielle

1/ Méthode d'Euler

Pour h proche de 0, on a y(a+h) » y(a) + h y'(a).

Nous allons utiliser cette approximation affine pour construire pas à pas une fonction vérifiant une

équation différentielle du premier ordre et passant par un point donné (x0,y0). Soit l'équation différentielle définie par y'=f(x,y) et les conditions initiales (x0,y0).

En (x0,y0), on connaît la pente de la tangente à partir de l'équation différentielle, f(x0,y0)

On assimile alors sur l'intervalle [x0,x0+h] la fonction à sa tangente. On détermine alors le point (x1,y1) avec x1=x0+h et y1= y0+h f(x0,y0) On recommence le même raisonnement avec le point (x1,y1) .

On poursuit en construisant la suite de points (xn,yn) et en assimilant la courbe à une application affine par

morceau. Exemple : Construire la courbe intégrale de y'+y=x vérifiant y(0)=0 avec un pas h=0.5. Remarque : La convergence de la méthode est de l'ordre de .

ENIHP1Equations différentielles p. 10

2/ Méthode de Runge Kutta

Soit l'équation différentielle définie par y'=f(x,y) et les conditions initiales (x0,y0).

La méthode de Runge Kutta d'ordre 4 (la plus classique) est définie par la suit de points (xn,yn) vérifiant :ïï

+++=+)2,()2/,2/(),(6/)4( 213
12 1 3211
hkhkyhxfk hkyhxfk yxfk kkkhyy nn nn nn nn et xn+1=xn+h Cette méthode améliore notablement la convergence du calcul, de l'ordre de .quotesdbs_dbs45.pdfusesText_45
[PDF] comment appelle t on l'eau ? l'état gazeux

[PDF] la cene leonard de vinci

[PDF] leonard de vinci philosophe

[PDF] film de leonard de vinci

[PDF] comment est mort leonard de vinci

[PDF] qu'est ce qu'un mauvais conducteur en physique

[PDF] les gaz rares chimie

[PDF] quelles sont les molécules formées par les atomes de gaz nobles

[PDF] g(x)=e^x-x-1 etudier les variations de la fonction g

[PDF] h(x)=(-x-1)e^-x

[PDF] f(x)=x+1+x/e^x

[PDF] carnet de bord voyage scolaire rome

[PDF] dossier pédagogique voyage rome

[PDF] donner les valeurs de u(1) et u(4)

[PDF] calculer u1 u2 u3 u4