[PDF] [PDF] Sommaire 1 Convergence des Séries Numériques





Previous PDF Next PDF



SERIES NUMERIQUES

quand la série converge. Définition 3. Pour une série convergente ? n ? 0 un



Sommaire 1. Convergence des Séries Numériques

Le reste d'ordre n de la série est alors noté rn et il vaut : rn = s ?sn. Définition : La nature d'une série est le fait qu'elle converge ou diverge.



1 Séries : propriétés générales

On dit que la série de terme général un est convergente si la suite (Sn) a Pour chaque n ? N le reste d'ordre n de cette série est : Rn = S ? Sn =.



Séries numériques

Allez à : Correction exercice 15. Exercice 16. Etudier la convergence des séries de terme général : Les trois dernières sommes s'annulent et il reste.



Séries

Par contre si elle est convergente



Séries numériques

29 avr. 2014 une somme partielle il faut examiner le reste. Définition 4. Soit ? un une série convergente de somme s



Chapitre 8 : Séries

2 déc. 2010 Celui-ci est resté célèbre par sa position très sceptique ... C'est là l'idée d'une série (convergente) en mathématiques : une somme d'un ...



SÉRIES ET INTÉGRALES GÉNÉRALISÉES

vn–k = zn la série (? wn) est absolument convergente. Il reste à montrer que sa somme est le produit des sommes des deux séries. On a en effet :.



Sur lensemble de convergence absolue dune série trigonométrique

pi j s'iiimtx converge absolu- ment en XQ sans converger partout. Il est



Sommaire 1. Convergence des Séries Numériques

Le reste d'ordre n de la série est alors noté rn et il vaut : rn = s ? sn. Définition : La nature d'une série est le fait qu'elle converge ou diverge.



[PDF] Séries numériques - Licence de mathématiques Lyon 1

Etudier la convergence de la série numérique de terme général : Les trois dernières sommes s'annulent et il reste



[PDF] [PDF] Séries - Exo7 - Cours de mathématiques

Par contre si elle est convergente sa somme est évidemment modifiée Une façon pratique d'étudier la convergence d'une série est d'étudier son reste : le 



[PDF] Sommaire 1 Convergence des Séries Numériques

Le reste d'ordre n de la série est alors noté rn et il vaut : rn = s ?sn Définition : La nature d'une série est le fait qu'elle converge ou diverge



[PDF] L2 - Math4 Exercices corrigés sur les séries numériques

Exercice 6 (1) Montrer que la série de terme général un = n ?1 + ln n ? ln(n + 1) est convergente (2) En déduire que la suite an =1+



[PDF] SERIES NUMERIQUES

quand la série converge Définition 3 Pour une série convergente ? n ? 0 un de somme S et de sommes partielles Sn on appelle reste d'ordre n (ou de 



[PDF] Séries numériques - Xiffr

Soit ? an une série convergente à termes strictement positifs Soit ? un une série à termes positifs convergente On note le reste d'ordre n



[PDF] Séries numériques

29 avr 2014 · une somme partielle il faut examiner le reste Définition 4 Soit ? un une série convergente de somme s et (sn) la suite des sommes



[PDF] Chapitre 3 — séries numériques — exercices corrigés page 1

donne la convergence absolue de la série ? dn Dans le cas x = 1 il reste qn = n donc la série ? qn diverge grossi`erement aussi



[PDF] Exercices corrigés séries numériques

De Cauchy à nos jours les séries restent au cœur du cours de taupe et fournissent u une série convergente à termes ? 0 de restes Rn = ?

  • Qu'est-ce que le reste d'une série ?

    Reste d'ordre n.
    Si la série ? u n est convergente et de somme , le nombre défini par r n = s ? s n est appelé reste d'ordre de la série ? u n .
  • Comment prouver qu'une série est convergente ?

    Théorème : Si la série (de réels positifs) ?n?un? ? n ? u n ? converge, alors la série ?nun ? n u n converge. On dit alors que la série est absolument convergente.
  • Comment majorer le reste d'une série ?

    Le théorème qui concerne la majoration du reste et l'encadrement de la somme est énoncé pour le cas d'une série de terme général u n = ( ? 1 ) n v n avec v n ? 0 , le passage à l'autre cas étant immédiat.
  • un = 0. Si une série converge, son terme général tend vers 0. Dans le cas où le terme général ne tend pas vers 0, on dit que la série diverge grossièrement. (vk+1 ?vk) = vn+1 ?v0 Les suites (sn) et (vn+1) sont de même nature, il en est de même de (vn).
[PDF] Sommaire 1 Convergence des Séries Numériques

Séries numériques8-1Sommaire

1. Convergence des Séries Numériques1

1.1. Nature d"une série numérique . . . . . .1

1.2. Séries géométriques . . . . . . . . . . . .2

1.3. Condition élémentaire de convergence .2

1.4. Suite et série des diérences . . . . . . .2

2. Opérations sur les Séries Convergentes3

2.1. Somme de 2 séries . . . . . . . . . . . . .3

2.2. Produit par un scalaire . . . . . . . . . . .3

3. Séries à termes positifs3

3.1. Séries à termes positifs . . . . . . . . . .3

3.2. Critère de comparaison . . . . . . . . . .3

3.3. Critère d"équivalence . . . . . . . . . . .4

3.4. Comparaison à une intégrale impropre .4

3.5. Règle de Riemann . . . . . . . . . . . . .5

3.6. Règle de d"Alembert . . . . . . . . . . . .54. Séries Absolument Convergentes6

4.1. Convergence absolue . . . . . . . . . . .6

4.2. Conv. des séries absolument conv. . . . .6

4.3. Une convergence absolue . . . . . . . . .6

5. Séries Numériques Réelles Alternées7

5.1. Séries alternées . . . . . . . . . . . . . .7

5.2. Critère spécial des séries alternées . . .7

6. Calcul Exact de Sommes de Séries8

6.1. Sommation en dominos . . . . . . . . . .8

6.2. Avec des séries entières ou de Fourier . .9

7. Calcul Approché9

7.1. Principe général . . . . . . . . . . . . . .9

7.2. Avec le critère spécial . . . . . . . . . . .9

7.3. Autres cas . . . . . . . . . . . . . . . . . .9

8. Compléments10

8.1. Colbert, lycée numérique . . . . . . . . .10

8.2. Les mathématiciens du chapitre . . . . .11L"objet de l"étude des séries numériques est de donner un sens à des sommes infinies de nombres réels

ou complexes et, éventuellement, de les calculer.

1. Convergence des Séries Numériques

1.1. Nature d"une série numériqueDéfinition :Soit(un)n2Nune suite d"éléments deK(K=RouC).

On appellesuite des sommes partiellesde(un)n2N, la suite(sn)n2N, avecsn=nP k=0uk.Définition : Sinon, on dit qu"ellediverge.Notation :Lasérie de terme généralunse noteX u

n.Définition :Dans le cas où la série de terme généralunconverge, la limite, notées, de la suite

sn)n2Nest appeléesommede la série et on note :s=1P n=0un.

Le reste d"ordrende la série est alors notérnet il vaut :rn=ssn.Définition :Lanatured"une série est le fait qu"elle converge ou diverge.

Étudier une série est donc simplement étudier une suite, la suite des sommes partielles de (un). Le but

de ce chapitre est de développer des techniques particulières pour étudier des séries sans nécessaire-

ment étudier la suite des sommes partielles.

Dans certains cas, on reviendra à la définition en étudiant directement la convergence de la suite des

sommes partielles.Cours de Spé T.S.I. © Christophe Caignaert - Lycée Colbert -59200Tourcoing - http://c.caignaert.free.fr

8-2Séries numériquesLa convergence d"une série ne dépend pas des premiers termes...

1.2. Exemple fondamental : les séries géométriquesThéorème :La série de terme généralxnconverge,jxj<1.

De plus, la somme est :s=1P

n=0xn=11x.Démonstration : nP k=0xk=1xn+11xpourx,1.

1xn+11xn"a de limite finie que sijxj<1, cette limite est alors11x.

D"autre part, pourx= 1,nP

k=0xk=n+1 diverge.La raison d"une suite géométrique est le coecient par lequel il faut multiplier chaque terme

pour obtenir le suivant. La somme des termes d"une série géométrique convergente est donc : " le premier terme »1" la raison ». Ceci prolonge et généralise la somme des termes d"une suite géométrique qui est : " le premier terme »" le premier terme manquant »1" la raison » Quand la série converge, il n"y pas de termes manquants... La formule est la même.

1.3. Condition nécessaire élémentaire de convergenceThéorème :

Punconverge)limn!1un= 0.Démonstration :

Punconverge)(sn)converge verss)(sn+1)converge verss

)limn!1sn+1sn= 0)limn!1un+1= 0)limn!1un= 0.Si une série converge, son terme général tend vers 0.

Dans le cas où le terme général ne tend pas vers 0, on dit que la sériediverge grossièrement.

1.4. Suite et série des diérencesThéorème :La suite(vn)converge,la sérieP(vn+1vn)converge.Démonstration :On considèreP(vn+1vn), sa suite des sommes partielles est(sn)avec

s n=n X k=0( vk+1vk)=vn+1v0

Les suites

(sn)et(vn+1)sont de même nature, il en est de même de(vn).Cours de Spé T.S.I. © Christophe Caignaert - Lycée Colbert -59200Tourcoing - http://c.caignaert.free.fr

Séries numériques8-32. Opérations sur les Séries Convergentes

2.1. Somme de 2 séries

Théorème :

PunetPu0nconvergent et ont pour sommesets0

)P(un+u0n)converge et a pour somme(s+s0).

Démonstration :On applique simplement le théorème équivalent sur les suites, appliqué bien sûr

aux suites des sommes partielles.2.2. Produit par un scalaire

Théorème :

Punconverge et est de sommes;2K)P(un)converge et est de sommes.

Démonstration :On applique encore le théorème équivalent sur les suites à la suite des sommes

partielles.Il y a bien sûr une notion sous-jacente d"espace vectoriel des séries convergentes.

3. Séries à termes positifs

3.1. Séries à termes positifs

Définition :On dit qu"une sériePunest une série à termes positifs, 8n2N,un>0.

Définition :On dit qu"une sériePunest une série à termes positifs à partir d"un certain rang

, 9N2N;8n>N;un>0

3.2. Critère de comparaisonThéorème :

PunetPvndeux séries positives à partir d"un certain rang N, telles que

8n>N; un6vn

Si

Pvnconverge, alorsPunconverge.

SiPundiverge, alorsPvndiverge.Démonstration :Seule la première assertion est à montrer, l"autre est équivalente.

On le montre pour les séries positives

(N = 0).

On posesn=nP

k=0uk,s0n=nP k=0vkets0=1P n=0vn, on asn6s0n.

Les suites

(sn)et(s0n)sont croissantes et la deuxième converge. On a doncs0n6s0. Ce qui prouve que sn)est croissante majorée et donc converge. Pour le cas de séries positives à partir du rang N, on considère les sommes partiellessn=nP k=Nuk...Exemple :Etudions la convergence de+1P n=1lnnn2n:

C"est une série à termes positifs (ou plus simplement positive), on va pouvoir utiliser le critère de

comparaison.

A l"infini,

lnnn tend vers 0 et donc lnnn est une suite bornée par A:On a donc8n2N;06lnnn 6A ce qui donne8n2N;06lnnn2n6A2 nqui est le terme général d"une série géométrique de raison12

donc convergente.Cours de Spé T.S.I. © Christophe Caignaert - Lycée Colbert -59200Tourcoing - http://c.caignaert.free.fr

8-4Séries numériquesCeci prouve que

+1P n=1lnnn2nconverge.

3.3. Critère d"équivalenceThéorème :

PunetPvndeux séries positives à partir d"un certain rang N, telles que :un+1vn alorsPunetPvnsont de même nature.Démonstration :A partir d"un certain rang N, on a 0612 un6vn62un.

SiPunconverge,P2unconverge et doncPvnconverge.

SiPvnconverge,P12

unconverge et doncPunconverge.On peut remarquer que le critère d"équivalence est, par linéarité, applicable à des séries de

signe constant à partir d"un certain rang. En eet, la convergence dePunéquivaut à celle dePun.

Par ailleurs, on veillera à appliquer le critère d"équivalence auterme général:un, et non à la

série :Pun.

Exemple :Etudions la convergence de+1P

n=111+2 n.

C"est une série à termes positifs (ou plus simplement positive), on va pouvoir utiliser le critère d"équi-

valence.11+2 n+112 nqui est le terme général d"une série géométrique de raison12 ;donc convergente.

Ceci prouve que

+1P n=111+2 nconverge.

3.4. Comparaison à une intégrale impropreThéorème :Soitfune applicationpositive et décroissantesur[a;+1[,

alors la série

Pf(n)etZ

+1 a f(t)dtsont de même nature.

Et si elles convergent,

Z +1 n+1f(t) dt6+1P k=n+1f(k)6Z +1 n f(t) dtDémonstration :Remarquons d"abord que, commeZ x a f(t)dtest croissante, Z +1 a f(t)dtconverge,la suite Zp a f(t)dt! converge. On prendra pour la démonstrationa= 0. Commefdécroît sur[n;n+1],

8x2[n;n+1]; f(n+1)6f(x)6f(n)

et en intégrant, comme on peut le voir sur la figure 1, page ci-contre :f(n+1)6Z n+1 n f(t)dt6f(n). d"où en sommant pP n=1f(n)6Rp

0f(t)dt6p1P

n=0f(n), ce qui assure le résultat.On a tout intérêt à mémoriser cette figure 1 qui, associée à la relation de Chasles, fournit

démarche et résultat!

Exemple :Etudions la convergence de+1P

n=111+n2:Cours de Spé T.S.I. © Christophe Caignaert - Lycée Colbert -59200Tourcoing - http://c.caignaert.free.fr

Séries numériques8-5y

x y= sin(x)n-1nn+1f(n-1) f(n) f(n+1)f(n)f(n+1)y=f(x) 0

1Figure 1 -Comparaison série-intégralefdéfinie parf(t)=11+t2est positive, décroissante sur[0;+1[etZ

+1

011+t2dtconverge et est de

même nature que la série étudiée.

Ceci prouve que

+1P n=111+n2converge.

3.5. Règle de RiemannThéorème :2R;+1P

n=11n converge,>1.Ce sont les séries de Riemann.

Démonstration :On compare cette série avecZ

+1 1 f(t)dtet le résultat est immédiat.Ceci nous donne la règle de Riemann.

Théorème :2R; un+1kn

, alors :Punconverge,>1.Démonstration :Il sut d"utiliser le critère d"équivalence et le théorème précédent.3.6. Règle de d"Alembert

Théorème :

Punune série à termes positifs non nuls (à partir d"un certain rang) telle que : lim n!1u n+1u n=l si l >1,Pundiverge grossièrement, si l <1,Punconverge,

et si l= 1, on ne peut pas conclure.Cours de Spé T.S.I. © Christophe Caignaert - Lycée Colbert -59200Tourcoing - http://c.caignaert.free.fr

8-6Séries numériquesCe théorème est séduisant à priori, mais on tombe très souvent sur le cas douteux. Il s"utilise

souvent dans le cadre des séries entières qu"on étudiera dans quelques chapitres. Avec les séries numériques, il s"utilise principalement quand on se trouve en présence de factorielles ou de termes de nature géométrique du type :an.

Démonstration :Pourl >1, la suite positive(un)croit et ne tend donc pas vers 0. On a bien la diver-

gence grossière.

Pourl <1, à partir d"un certain rang Nun+1u

n61+l2 et donc par récurrence très facile, pourn>N,un6 1+l2 nN u

N= 1+l2

nuN 1+l2 N.

Cette dernière série est géométrique, le théorème de comparaison entre séries positives fournit le

résultat.Exemple :Étudions la convergence de+1P n=1n!n n:

C"est une série à termesstrictementpositifs, on va pouvoir utiliser le critère de d"Alembert.

n+1)!( n+1)n+1n!n n=(n+1)nn( n+1)n+1=nn+1 n=1 1+1n n!+11e <1

Ceci prouve que

+1P n=1n!n nconverge.

4. Séries Absolument Convergentes

4.1. Convergence absolue d"une série numérique

Définition :Une sériePunestabsolument convergente,Pjunjest convergente. Une série convergente mais non absolument convergente est ditesemi-convergente.

4.2. Convergence des séries absolument convergentesThéorème :Toute série absolument convergente est convergente.Démonstration :CommejReunj6junjetjImunj6junj, il sut par linéarité de le montrer pour les

séries à valeur réelle. Pour celles-ci, on poseu+n= max(un;0)etun= max(un;0). Les sériesPu+netPunsont positives etu+n6junj,un6junjprouvent par comparaison que ces séries convergent.

Commeun=u+nun, on a bienPunconverge.Attention, ceci n"est pas une équivalence, on verra qu"il existe des séries semi-convergentes. L"exemple

le plus classique est +1P n=1( 1)nn

4.3. Un moyen classique de montrer une convergence absolue de série

Ceci n"est pas un théorème mais un procédé usuel qu"il faut justifier à chaque fois. Si il existe>1 tel que limn!1nun= 0, alorsjunj=o1n , commeP1n

converge, par comparaison,Punconverge absolument.Cours de Spé T.S.I. © Christophe Caignaert - Lycée Colbert -59200Tourcoing - http://c.caignaert.free.fr

Séries numériques8-75. Séries Numériques Réelles Alternées

5.1. Séries alternéesDéfinition :La sériePunestalternée,P(1)nunest une série de signe constant.

On parle aussi de série alternée à partir d"un certain rang.Il s"agit donc de séries à valeur réelle.

Exemple :

P(1)nn

est une série alternée, mais pasPcosn.

5.2. Critère spécial des séries alternéesThéorème:

Punune série alternée telle que la suite(junj)est décroissante tendant vers 0 à l"infini.

Al ors,Punest convergente de sommesets2[sn;sn+1](ou[sn+1;sn]). De pl us,a vecrn=ssn, on ajrnj6jun+1j, etrnest du signe deun+1.

On dit que la somme de la série est encadrée par 2 termes consécutifs et que le reste de la série est,

en valeur absolue, majorée par son premier terme.Ce théorème est illustré par la figure 2, ci-dessous.

s

2n+1s2n+2s s2nj

u2n+1j j r2nj

Figure 2 -Convergence d"une série répondant au critère spécialDémonstration :On va faire la démonstration quandunest du signe de(1)n.

s

2n+2s2n=u2n+2+u2n+1=ju2n+2jju2n+1j60

quotesdbs_dbs30.pdfusesText_36
[PDF] série convergente exemple

[PDF] cours series numeriques résumé

[PDF] convergence absolue d'une série

[PDF] etudier la convergence d'une suite prepa

[PDF] le produit de deux suites divergentes est une suite divergente

[PDF] limite suite arithmétique

[PDF] suites d'intégrales terminale s

[PDF] convergence et divergence maths

[PDF] convergence et divergence optique

[PDF] convergence et divergence définition

[PDF] convergence et divergence suite

[PDF] suite convergente définition

[PDF] dialogue entre un vendeur et un client en anglais

[PDF] guide de conversation espagnol pdf

[PDF] la conversation amoureuse pdf