[PDF] Théorème de la bijection : exemples de rédaction





Previous PDF Next PDF



VARIATIONS DUNE FONCTION

Un tableau de variations résume les variations d'une fonction en faisant apparaître les intervalles où elle est monotone. Méthode : Déterminer graphiquement les 



Tableau de variation :

On a vu que si f est une fonction constante définie sur un intervalle I de IR alors f '(x) = 0 pour tout x de IR. On admettra la propriété réciproque à savoir 



VARIATIONS DES FONCTIONS

Une fonction croissante change l'ordre. Graphiquement la courbe représentative de f sur l'intervalle I " descend ". 2) Tableau de variation d'une 



FONCTION LOGARITHME NEPERIEN (Partie 2)

Dériver la fonction suivante sur l'intervalle 0;+????? : f (x) = On dresse le tableau de variations de la fonction logarithme népérien : ...



de la 1`ere S `a la TS. Chapitre 4 : Études de fonctions Exercice n?1

Dresser le tableau de variations de f sur [0; ?]. Pour la suite de l'exercice on étudiera la fonction sur l'intervalle ]?.



Terminale S - Continuité dune fonction Théorème des valeurs

Dans le tableau de variation ci-dessous la fonction f est continue et strictement décroissante sur l'intervalle ] – ? ; 3 ] et continue et strictement 



Théorème de la bijection : exemples de rédaction

On considère une fonction f : I ? R définie sur un intervalle I. Cette fonction est C? sur Pf =]0+?[ et son tableau de variation (com-.



Variation des fonctions

L'ensemble des nombres réels compris entre a et b est un intervalle fini qui Pour construire le tableau des variations de la fonction f sur D on ...



Première S - Extremums dune fonction

Si une fonction dérivable sur un intervalle I



LA DÉRIVÉE SECONDE

Définition intuitive : Une fonction f est dite convexe sur un intervalle si pour toute ces valeurs (un peu comme dans le tableau des variations).



[PDF] VARIATIONS DUNE FONCTION - maths et tiques

Un tableau de variations résume les variations d'une fonction en faisant apparaître les intervalles où elle est monotone Méthode : Déterminer graphiquement les 



[PDF] Obtenir le tableau de variations dune fonction ƒ va devenir un

Pour étudier une fonction c'est à dire pour connaitre ses variations il faudra que l'on cherche le signe de la fonction dérivée Il faudra donc concrètement 



[PDF] Chapitre 7 - Variations dune fonction

7 1 1 Sens de variation Dire qu'une fonction est croissante sur un intervalle I revient à dire que lorsque la valeur de x augmente dans l'intervalle I la 



[PDF] Fonctions 2-variations

Lorsque le sens de variations d'une fonction est donné par une phrase ou un tableau de variation comparer les images de 2 nombres d'un intervalle



[PDF] Sens de variation dune fonction sur un intervalle - R2MATH

Dresser le tableau des variations de la fonction f qui à chaque valeur de t de l'intervalle [0; 24] fait correspondre la température f(t) en °C



[PDF] Variations des fonctions

Théorème 1 : Soit f une fonction dérivable sur un intervalle I Ca sert à déterminer le tableau de variations d'une fonction :



[PDF] Image des intervalles

Alors f (I) est un intervalle Autrement dit l'image d'un intervalle par une fonction continue est un intervalle maison sur le tableau de variations



[PDF] 1 S Sens de variation dune fonction dérivable

On ne peut exprimer les variations sur une réunion d'intervalles 4°) Tableau d'une fonction sur un intervalle inclus dans l'ensemble de définition Exemple :



[PDF] Voici la marche à suivre pour étudier une fonction f définie sur un

Etude du signe de f' • Si f est sous la forme ax + b ? Petit tableau de signe • Si f est sous la forme ax² + bx + c ? calcul du discriminant ? et



[PDF] Seconde - Fonctions sens variations extremums - Parfenoff org

Voici la courbe représentative d'une fonction sur l'intervalle [-2 ; 3]: 1) Décrire les variations de la fonction 2) Dresser son tableau de variation 3 

  • Comment déterminer la variation d'une fonction sur un intervalle ?

    Pour déterminer le sens de variation d'une fonction sur un intervalle I, on peut comparer les valeurs de f(a) et f(b) où a et b sont deux réels de l'intervalle I vérifiant a\\lt b.
  • On place les valeurs pour lesquelles f change de sens de variation dans la première ligne du tableau de variations. On trace une fl?he qui monte dans la deuxième ligne du tableau lorsque f est croissante et une fl?he qui descend lorsque f est décroissante.
ECE1-B2015-2016Théorème de la bijection : exemples de rédaction Le but de cette fiche est de faire un point sur le théorème de la bijection. Après un retour sur l"énoncé et sa démonstration, on illustrera l"utilisation de ce théorème en agrégeant les questions rencontrées lors des DS de l"année

2013-2014. Cela devrait vous convaincre, je l"espère, qu"il n"est pas envisa-

geable de perdre des points sur ces questions (toujours les mêmes!).

I. L"énoncé général du théorème

Théorème 1.Théorème de la bijection

On considère une fonctionf:I!Rdéfinie sur unintervalleI.1)fcontinue surI,

2)fstrictement

croissante surI.=)a)f(I)est un intervalle, b)f:I!f(I)est bijective, c)f1:f(I)!Iest continue et strictement croissante surf(I).1)fcontinue surI,

2)fstrictement

décroissante surI.=)a)f(I)est un intervalle, b)f:I!f(I)est bijective, c)f1:f(I)!Iest continue et strictement décroissante surf(I).Démonstration.(Cas où fest strictement croissante) a)f(I)est un intervalle car image d"un intervalle par une fonction continue (c"est une des conséquences du TVI). b)La fonctionf:I!f(I)est surjective puisque son ensemble d"arrivée coïncide avec son image. De plus, commefest strictement croissante, elle est injective.

La fonctionfest donc bijective deIsurf(I).

c)Montrons quef1:f(I)!Iest aussi strictement monotone. Il s"agit de montrer :8(u1;u2)2(f(I))2; u1< u2)f1(u1)< f1(u2).

Soientu1etu2deux éléments def(I). Ainsi :

il existex12Itel queu1=f(x1), il existex22Itel queu2=f(x2). D"oùf1(u1) =f1(f(x1)) =x1etf1(u2) =f1(f(x2)) =x2. L"implication à montrer s"écrit donc :f(x1)< f(x2))x1< x2. On la démontre par contraposée : six1>x2alorsf(x1)>f(x2)carfest crois- sante. Le caractère continu def1, plus technique, n"est pas démontré ici.Remarque Le pointa)est une conséquence du TVI et est essentiel pour démontrer le caractère continu def1. Le théorème de la bijection est donc souvent présenté comme un corollaire du TVI. Toutefois, citer le TVI au lieu du théorème de la bijection sera considéré comme une erreur de rédaction : les hypothèses et résultats du théorème de la bijection sont plus précis. La démonstration du pointc)fait apparaître la propriété suivante. Pour toutx1,x2,éléments deDf:f(x1)< f()< f(x2)f

1strictement croissante==========)x1< < x2Évidemment, cette propriété est aussi vérifiée pour des inégalités larges.

Cette propriété donne aussi souvent lieu à des questions dans les concours.1 ECE1-B2015-2016II. L"énoncé adapté aux questions

Théorème 2.

On considère une fonctionf:I!Rdéfinie sur unintervalleI.1)fcontinue surI,

2)fstrictement

monotone surI.)Alors pour touty2f(I), l"équationy=f(x)admet uneuniquesolutionx2I.Démonstration.

C"est un corollaire direct du théorème

1 La fonctionf:I!f(I)est bijective. On en déduit que tout élément y2f(I)admet un unique antécédentxdans l"intervalleI.Remarque Les questions nécessitant ce théorème sont facilement repérables : " Montrer qu"il existe ununique2:::tel que ... » " Montrer que l"équationf(x) =:::admet uneuniquesolution dans ... » La rédaction correcte d"une telle question demande de la rigueur. Une erreur classique et lourdement pénalisée consiste à oublier de préciser les intervalles considérés (Ietf(I)). Le théorème suivant permet de préciser la nature de l"intervallef(I).

Théorème 3.

SoitIun intervalle d"extrémitésaetb(chacune pouvant être infinie). Soitf:I!Rune fonction continue et strictement monotone surI. a)Alorsf(I)est un intervalle d"extrémitéslimx!af(x)etlimx!bf(x). b)De plus, les intervallesIetf(I)sont de même nature : fermés (comme[1;2],[1;+1[,] 1;2]), ouverts (comme]1;2[,]1;+1[,] 1;2[), ou semi-ouverts (comme]1;2],[1;2[).Tableau récapitulatif. Le tableau suivant permet de faire un point sur les différents types d"inter- valles rencontrés.Nature de l"intervallef(I)ICasfstrictement croissante surICasfstrictement décroissante surI[a;b][f(a);f(b)][f(b);f(a)][a;b[[f(a);limx!bf(x)[]lim x!bf(x);f(a)]]a;b]]lim x!af(x);f(b)][f(b);limx!af(x)[]a;b[]lim x!af(x);limx!bf(x)[]lim x!bf(x);limx!af(x)[Remarque Les tableaux de variation constituent un outil de base dans la rédaction des questions s"appuyant sur le théorème de la bijection. Une fois établi, un tel tableau permet la lecture rapide : des intervallesIde stricte monotonie def, des intervallesf(I)correspondants. Nous considérerons dans les illustrations suivantes que les tableaux de varia- tions sont déjà réalisés. (en cas de doute, se référer aux corrigés précédemment fournis)2

ECE1-B2015-2016III. Illustration sur des exemples

III.1. Énoncé du DS1

Exercice 1

On considère la fonctionfdéfinie par :f(x) =x+ 1 +x1 + lnxx 2. Cette fonction estC1surDf=]0;+1[et son tableau de variation (com- plété avec les informations prouvées ci-dessous) est :x

Signe deg(x)Signe def0(x)Variations def0+1+

1+1+11

2 <0 01 2 a.Montrer que l"équationf(x) = 0admet une unique solution surDf.

On la notera.

b.Montrer que :12 < <1.

Démonstration.

a.On sait que :

1)fest continue sur]0;+1[,

2)fest strictement croissante sur]0;+1[.

De plus,f(]0;+1[) = ] limx!0+f(x);limx!+1f(x)[ = ] 1;+1[.

D"après le théorème de la bijection, la fonctionfréalise une bijection de]0;+1[dans] 1;+1[.

Or02] 1;+1[. On en déduit que l"équationf(x) = 0admet une unique solutionx2]0;+1[.b.On remarque que : f12 =12

4ln2<0,

f() = 0, f(1) = 2>0.

Ainsi on a :f12

< f()< f(1). Or, d"après le théorème de la bijection,f1:] 1;+1[!]0;+1[ est strictement croissante. En appliquantf1à l"inégalité précédente, on obtient :12 < <1.3

ECE1-B2015-2016III.2. Énoncé du DS5

Exercice 2

On considère la fonctionfdéfinie par :f(x) =(x+ 1)ln(x+ 1)x En posantf(0) = 1, on prolonge la fonctionfen une fonctionC1sur D f= [1;+1[(faire l"étude!). Son tableau de variation (complété avec les informations prouvées ci-dessous) est :x

Signe def0(x)Variations def10+1++

00+1+13

<24 >2 2 a.Démontrer qu"il existe un unique2[1;+1[tel quef() = 2. b.Montrer que :3< <4. (on donneln20;69etln51;61)

Démonstration.

a.On sait que :

1)fest continue sur[1;+1[,

2)fest strictement croissante sur[1;+1[.

De plus,f([1;+1[) = [f(1);limx!+1f(x)[ = [0;+1[.

D"après le théorème de la bijection, la fonctionfréalise une bijection de[1;+1[dans[0;+1[.

Or22[0;+1[. On en déduit que l"équationf(x) = 2admet une unique solutionx2[1;+1[.b.On remarque que : f(3) =4ln(4)3 =4ln(22)3 =8ln(2)3 <83

0;7 =5;63

<2, f() = 2, f(4) =5ln(5)4 >54

1;6 = 2.

Ainsi on a :f(3)< f()< f(4).

Or, d"après le théorème de la bijection,f1:[0;+1[![1;+1[ est strictement croissante. En appliquantf1à l"inégalité précédente, on obtient :3< <4.Remarque Le fait qu"une seule flèche (et pas 2!) soit dessinée dans le tableau de variation ne doit pas surprendre. En effet, on rappelle le résultat suivant (cfchapitre " Dérivabilité ») :f

0>0surIetf0ne s"annule qu"en

un nombre fini de points)fstrictement croissante surI4

ECE1-B2015-2016III.3. Énoncés du DS6

III.3.a) Énoncé de l"exercice 2

Exercice 3

Pour tout entier naturel non nuln, on définit la fonctionfnpar :

8x2R; fn(x) =11 +ex+n x

Cette fonction estC1surDf=Ret son tableau de variation (complété avec les informations prouvées ci-dessous) est :x

Signe def00n(x)Variations

def0nSigne def0n(x)Variations defn10+10+ nn 14 +n 14 +nnn

11+1+1

1n <0u n00 >0a.Montrer que l"équationfn(x) = 0possède une seule solution surR.

On noteuncette solution.

b.Montrer qu"on a :8n2N;1n < un<0.

Démonstration.

a.Soitn2N. On sait que :

1)fnest continue sur] 1;+1[,

2)fnest strictement croissante sur] 1;+1[.De plus,fn(] 1;+1[) = ] limx!1fn(x);limx!+1fn(x)[ = ]n;+1[.

D"après le théorème de la bijection, la fonctionfnréalise une bijection de] 1;+1[dans] 1;+1[.

Or02] 1;+1[. On en déduit que l"équationfn(x) = 0admet une unique solutionx2] 1;+1[. b.On remarque que : fn1n =11 +e1n

1 =e1n

1 +e1n

<0, fn(un) = 0, fn(0) =12 >0.

Ainsi on a :fn1n

< f n(un)< fn(0). Or, d"après le théorème de la bijection,f1n:] 1;+1[!] 1;+1[ est strictement croissante. En appliquantf1nà l"inégalité précédente, on obtient :1n < un<0.5 ECE1-B2015-2016III.3.b) Énoncés de l"exercice 3

Exercice 4

Soita >0. On considère la fonctionfdéfinie par :f(x) = exp[a(x1)].

A)Casoùa= 1.

Montrer que l"équationf(x) =xadmet une unique solution surR.

B)Casoùa >1.

a.Montrer que l"équationf(x) =xadmet deux solutions surR.

On noterar(a)la plus petite.

b.Montrer que :0< r(a)<1.Technique de démonstration. On souhaite trouver ici les solutions de l"équationf(x) =x. On ne peut appliquer directement le théorème de la bijection àf. On considère alors la fonctiong:x7!f(x)xde sorte que : f(x) =x,g(x) = 0Démonstration.On noteg:x7!f(x)x. A)Casoùa= 1. On a alors le tableau de variation suivant.x

Signe deg0(x)Variations deg11+10+

+1+100+1+1Ainsi,g(x) = 0admetx= 1comme unique solution. Il en est de même de l"équationf(x) =x.B)Casoùa >1. On a le tableau de variation suivant.x g

0(x)g11lnaa+10+

+1+1g(1lnaa )g(1lnaa )+1+10 e ar(a)01 0

On remarque que :

g 1lnaa =ea(lnaa 1lnaa =1a

1 +lnaa

<0 (cf corrigé du DS) a.Détaillons les éléments de ce tableau de variation.

Surl"intervalle] 1;1lnaa

On sait que :

1)gest continue sur] 1;1lnaa

2)gest strictement décroissante sur] 1;1lnaa

De plus :g(]1;1lnaa

[) = ]g(1lnaa );limx!1g(x)[ = ]g(1lnaa );+1[. D"après le théorème de la bijection, la fonctiongréalise une bijection de] 1;1lnaa [dans]g(1lnaa );+1[.

Or02]g(1lnaa

);+1[. On en déduit que l"équationg(x) = 0admet une unique solutionx2] 1;1lnaa L"équationf(x) =xadmet donc une unique solution sur]1;1lnaa [.6

ECE1-B2015-2016Surl"intervalle]1lnaa

;+1[.

On sait que :

1)gest continue sur]1lnaa

;+1[,

2)gest strictement croissante sur]1lnaa

;+1[.

De plus :g(]1lnaa

;+1[) = ]g(1lnaa );limx!+1g(x)[ = ]g(1lnaa );+1[. D"après le théorème de la bijection, la fonctiongréalise une bijection de]1lnaa ;+1[dans]g(1lnaa );+1[.

Or02]g(1lnaa

);+1[. On en déduit que l"équationg(x) = 0admet une unique solutionx2]1lnaa ;+1[. L"équationf(x) =xadmet donc une unique solution sur]1lnaa ;+1[. b.Notons tout d"abord que la plus petite solution def(x) =x, notéer(a) est dans l"intervalle]1;1lnaa [. On en déduit quer(a)<1lnaa <1.

D"autre part, on a :

g(0) =ea>0, g(r(a)) = 0.

Ainsi on a :g(r(a))< g(0).

Or, d"après le théorème de la bijection, la fonction g

1:]g(1lnaa

);+1[!] 1;1lnaa [est strictement décroissante. En appliquantg1à l"inégalité précédente, on obtient :0< r(a).

On en conclut :0< r(a)<1.Exercice 5

On considère la fonctionfdéfinie, pourx2[0;1]par :(x) =xex. Cette fonction estC1sur[0;1]et son tableau de variation est :x

Signe de0(x)Variations de01

00e 1e

1a.Montrer queréalise une bijection de[0;1]sur[0;1e

b.Montrer que sa fonction réciproque1est continue et strictement crois- sante sur[0;1e c.Dresser le tableau de variation de1.

Démonstration.

a.On sait que :

1)est continue sur[0;1],

2)est strictement croissante sur[0;1].

De plus,([0;1]) = [(0);(1)] = [0;1e

D"après le théorème de la bijection, la fonctionréalise une bijection de[0;1]dans[0;1e b.De plus, sa fonction réciproque1:[0;1e ]![0;1]est continue et strictement croissante sur[0;1e c.D"où le tableau de variation :x

Variations de10e

10011
7 ECE1-B2015-2016III.3.c) Énoncé du problème A

Exercice 6

On considère la fonctionfdéfinie par :f(x) =x3+ 5x1. Cette fonction polynomiale estC1surDf=Ret son tableau de variation (complété avec les informations prouvées ci-dessous) est :x

Signe def0(x)Variations def1+1+

11+1+10

1 01 2 13 8 a.Montrer que l"équationx3+ 5x1 = 0admet une unique solution dans

R. On notecette solution.

b.Établir que :0< <12

Démonstration.

a.On sait que :

1)fest continue sur] 1;+1[,

2)fest strictement croissante sur] 1;+1[.

De plus,f(] 1;+1[) = ] limx!1f(x);limx!+1f(x)[ = ] 1;+1[.

D"après le théorème de la bijection, la fonctionfréalise une bijection de] 1;+1[dans] 1;+1[.

Or02] 1;+1[. On en déduit que l"équationf(x) = 0admet une unique solutionx2] 1;+1[.b.On remarque que : f(0) =1<0, f() = 0, f12 =138 >0.

Ainsi on a :f(0)< f()< f12

Or, d"après le théorème de la bijection,f1:] 1;+1[!]0;+1[ est strictement croissante. En appliquantf1à l"inégalité précédente, on obtient :0< <12 .8quotesdbs_dbs45.pdfusesText_45
[PDF] caf dossier traité mais pas de paiement

[PDF] tableau de variation d'une fonction polynome

[PDF] dossier traité caf mais pas de reponse

[PDF] caf nous avons reçu votre courrier votre dossier sera étudié prochainement

[PDF] dossier rsa traité mais pas de paiement

[PDF] caf dossier traité apl

[PDF] dossier traité caf paiement

[PDF] délai traitement dossier caf

[PDF] solution tampon ph 10

[PDF] solution tampon cours pdf

[PDF] composition d'une montgolfière

[PDF] solution tampon exercice corrigé pdf

[PDF] comment obtenir l invalidité pour depression belgique

[PDF] modeles tangram imprimer

[PDF] poussée archimède