[PDF] VECTEURS ET REPÉRAGE Un repère est dit





Previous PDF Next PDF



FONCTIONS COSINUS ET SINUS

1) Définitions : définition D –x appartient à D et f (?x) = f (x). ... Dans un repère orthogonal



PRODUIT SCALAIRE

Définition : Soit un vecteur u 2) Définition du produit scalaire. Définition : Soit u ... 0 le repère étant orthogonal. Exemple :.





VECTEURS ET REPÉRAGE

Un repère est dit orthogonal si ?et ? ont des directions perpendiculaires. - Un repère est dit orthonormé Définition : Soit deux vecteurs H? =.



CHAPITRE 6 CINÉMATIQUE DU SOLIDE 6.1. Coordonnées dun

Il est possible de décrire le mouvement par rapport à n'importe quel repère. Exemple : Vitesse et accélération de la valve d'une roue de vélo. Par définition. # 



PRODUIT SCALAIRE DANS LESPACE

les vecteurs ? ? et '? sont deux à deux orthogonaux



Partie 1 : Série statistique à deux variables

Définition : Dans un repère orthogonal l'ensemble des points de coordonnées Définitions : L'interpolation et l'extrapolation sont des méthodes qui ...



Coordonnées dans un repère 1 Coordonnées dun point

Définition 1 Deux axes gradués de même origine et perpendiculaires définissent un repère orthogonal. De plus si les axes possèdent la même unité de 



PRODUIT SCALAIRE DANS LESPACE

Les vecteurs et ne sont pas orthogonaux. II. Vecteur normal à un plan. 1) Définition et propriétés. Définition : Un vecteur non nul de l'espace est normal à 



FONCTIONS DE REFERENCE

Définitions : Soit f une fonction définie sur un intervalle I. Dans un repère orthogonal la courbe de la fonction carré.



[PDF] REPERAGE DANS LE PLAN - maths et tiques

Définitions : - On appelle repère du Un repère est dit orthonormé s'il est orthogonal et si i http://www maths-et-tiques fr/telech/Lecture_coord pdf



[PDF] VECTEURS ET REPÉRAGE - maths et tiques

- Un repère est dit orthogonal si ?et ? ont des directions perpendiculaires - Un repère est dit orthonormé s'il est orthogonal et si ?et ? sont de 



Repère orthogonal normé orthonormé ? Mathrix

17 avr 2019 · Définition d'un repère orthogonal normé et orthonormé · Pour construire un repère il faut Durée : 5:49Postée : 17 avr 2019



[PDF] Repère dans le plan - AlloSchool

¬ Si (OI) et (OJ) sont perpendiculaires on dit que le repère est orthogonal ¬ Si de plus OI =OJ On dit que le repère est orthonormé ¬Dans un repère (O I J) 



[PDF] Coordonnées dans un repère - Melusine

Définition 1 Deux axes gradués de même origine et perpendiculaires définissent un repère orthogonal De plus si les axes possèdent la même unité de 



[PDF] Interrogation 24/08/2020 - Unemainlavelautre

24 août 2020 · 1 Donnez une définition d'un repère orthogonal 1 points 2 Donnez l'abscisse de A et les coordonnées de B dans le repère (OIJ)



[PDF] REPÈRES DU PLAN - Mathemathieu

repère orthogonal repère orthonormé Propriété-définition I 1 : On considère un repère (O; I; J) du plan Pour tout point M du plan il existe deux uniques 





[PDF] Repérage dans le plan Page 1 I- REPERE 1 Définition Soit O un

Définition Soit R(O I J) un repère orthonormal et les points A (xA ; yA) et B (xB ; yB) le vecteur AB a pour coordonnées AB



[PDF] Exemples dutilisation dun rep`ere 1 Prérequis et définitions

Un rep`ere affine de E est dit orthogonal si ses vecteurs sont orthogonaux et orthonormé si de plus ils sont de norme 1 2 Problématique

  • Quel est un repère orthogonal ?

    Un repère orthogonal est un repère où les axes sont perpendiculaires.
  • Comment justifier qu'un repère est orthogonal ?

    Repère orthogonal et orthonormal
    Si les axes (OI) et (OJ) sont perpendiculaires, alors est un repère orthogonal. Si les axes (OI) et (OJ) sont perpendiculaires, et qu'en plus OI = OJ alors est un repère orthonormal (ou orthonormé).
  • Exemples : Cas particuliers : Si les droites (OI) et (OJ) sont perpendiculaires, le repère est dit orthogonal. Si les points O, I, J forment un triangle rectangle isocèle en O (c'est-à-dire si OI = OJ et (OI) (OJ)) alors le repère est dit orthonormal (ou orthonormé).
VECTEURS ET REPÉRAGE

1 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

VECTEURS ET REPÉRAGE

Tout le cours en vidéo : https://youtu.be/9OB3hct6gak

Partie 1 : Repère du plan

Trois points du plan non alignés O, I et J forment un repère, que l'on peut noter (O, I, J). L'origine O et les unités OI et OJ permettent de graduer les axes (OI) et (OJ).

Si on pose í µâƒ— = í µí µ

et í µâƒ— = í µí µ , alors ce repère se note également (O, í µâƒ— ,

Définitions :

- On appelle repère du plan tout triplet (O, í µâƒ—, í µâƒ—) où O est un point et í µâƒ— et í µâƒ— sont deux vecteurs non

colinéaires.

- Un repère est dit orthogonal si í µâƒ— et í µâƒ— ont des directions perpendiculaires.

- Un repère est dit orthonormé s'il est orthogonal et si í µâƒ— et í µâƒ— sont de norme 1.

TP info : Lectures de coordonnées :

Partie 2 : Coordonnées d'un vecteur

Exemple :

Vidéo https://youtu.be/8PyiMHtp1fE

Pour aller de A vers B, on parcourt un chemin :

3 unités vers la droite et 2 unités vers le haut.

Ainsi í µí µ

=3í µâƒ—+2í µâƒ—.

Les coordonnées de í µí µ

se notent . 3 2 / ou (3;2). On préfèrera la première notation.

í µâƒ— O í µâƒ— Repère orthogonal í µâƒ— O í µâƒ— Repère orthonormé í µâƒ— O í µâƒ— Repère quelconque í µâƒ— í µâƒ— I J O

2 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr Méthode : Déterminer les coordonnées d'un vecteur par lecture graphique

Vidéo https://youtu.be/8PyiMHtp1fE

a) Dans le repère (O, í µâƒ—, í µâƒ—), placer les points í µ. -1 -2 -2 3 1 -4 4 -2 b) Déterminer les coordonnées des vecteurs í µí µ et í µí µ par lecture graphique.

Correction

On a :

=-í µâƒ—+5í µâƒ— donc í µí µ a pour coordonnées . -1 5 =3í µâƒ—+2í µâƒ— donc í µí µ a pour coordonnées . 3 2

Propriété :

Soit deux points í µ.

/ et í µ.

Le vecteur í µí µ

a pour coordonnées . Méthode : Déterminer les coordonnées d'un vecteur par calcul

Vidéo https://youtu.be/wnNzmod2tMM

Calculer les coordonnées des vecteurs í µí µ et í µí µ , tels que : 2 1 5 3 -1 -2 -2 3 1 -4 / et í µ. 4 -2

Correction

5-2 3-1 3 2 -2- -1 3- -2 A = . -1 5 4-1 -2- -4 A = . 3 2

3 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Propriétés :

Soit deux vecteurs 𝐼⃗.

/ et í µâƒ—í±¦

A, et un réel í µ.

On a :

A í µí µí°¼âƒ— í±¦

A -𝐼⃗.

𝐼⃗ et í µâƒ— sont égaux lorsque í µ=í µâ€² et í µ=í µâ€². Méthode : Appliquer les formules sur les coordonnées de vecteurs

Vidéo https://youtu.be/rC3xJNCuzkw

En prenant les données de la méthode précédente, calculer les coordonnées des vecteurs 3í µí µ

4í µí µ

et 3í µí µ -4í µí µ

Correction

On a : í µí µ

3 2 / et í µí µ -1 5

3í µí µ

3×3

3×2

9 6 /, 4í µí µ 4× -1

4×5

-4 20

3í µí µ

-4í µí µ 9- -4 6-20 13 -14 Méthode : Calculer les coordonnées d'un point défini par une égalité vectorielle

Vidéo https://youtu.be/eQsMZTcniuY

Soit les points í µ.

1 2 -4 3 1 -2

Déterminer les coordonnées du point í µ tel que í µí µí µí µ soit un parallélogramme.

Correction

í µí µí µí µ est un parallélogramme si et seulement si í µí µ

On pose .

/ les coordonnées du point í µ.

On a alors : í µí µ

-4-1 3-2 -5 1 / et í µí µ

1-í µ

-2-í µ A

Donc : 1-í µ

=-5 et -2-í µ =1 =-5-1 et -í µ =1+2 =6 et í µ =-3.

Les coordonnées du point í µ sont donc .

6 -3

4 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Partie 3 : Colinéarité de deux vecteurs

1. Critère de colinéarité

Propriété : Soit deux vecteurs 𝐼⃗ . / et í µâƒ— í±¦ A.

Dire que 𝐼⃗ et í µâƒ— sont colinéaires revient à dire que : í µí µ'-í µí µ'=0.

Remarque : Dire que 𝐼⃗ et í µâƒ— sont colinéaires revient à dire que les coordonnées des deux

vecteurs sont proportionnelles soit : í µí µ'=í µí µ'.

Démonstration au programme :

Vidéo https://youtu.be/VKMrzaiPtw4

• Si l'un des vecteurs est nul alors l'équivalence est évidente. • Supposons maintenant que les vecteurs 𝐼⃗ et í µâƒ— soient non nuls.

Dire que les vecteurs 𝐼⃗.

/ et í µâƒ—í±¦ A sont colinéaires équivaut à dire qu'il existe un nombre réel í µ tel que 𝐼⃗ =í µí µâƒ—.

Les coordonnées des vecteurs 𝐼⃗ et í µâƒ— sont donc proportionnelles et le tableau ci-dessous est un

tableau de proportionnalité : Donc : í µí µ'=í µí µ' soit encore í µí µ'-í µí µ'=0. Réciproquement, si í µí µ'-í µí µ'=0. Le vecteur í µâƒ— étant non nul, l'une de ses coordonnées est non nulle. Supposons que í µ'≠0. Posons alors í µ= . L'égalité í µí µ'-í µí µ'=0 s'écrit : í µí µ'=í µí µ'.

Soit : í µ =

Comme on a déjà í µ = í µí µâ€², on en déduit que 𝐼⃗ =í µí µâƒ—.

Méthode : Vérifier si deux vecteurs sont colinéaires

Vidéo https://youtu.be/eX-_639Pfw8

Dans chaque cas, vérifier si les vecteurs 𝐼⃗ et í µâƒ— sont colinéaires. a) 𝐼⃗. 4 -7 / et í µâƒ—. -12 21
/ b) 𝐼⃗. 5 -2 / et í µâƒ—. 15 -7

Correction

a) í µí µ'-í µí µ'=4×21- -7 -12 =84-84=0.

Le critère de colinéarité est vérifié donc les vecteurs 𝐼⃗ et í µâƒ— sont donc colinéaires.

On peut également observer directement que í µâƒ—=-3𝐼⃗.

5 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr b) í µí µ'-í µí µ'=5× -7 -2 15 =-35+30=-5≠0.

Le critère de colinéarité n'est pas vérifié donc les vecteurs 𝐼⃗ et í µâƒ— ne sont donc pas colinéaires.

2. Déterminant de deux vecteurs

Définition : Soit deux vecteurs 𝐼⃗ . / et í µâƒ— í±¦ A.

Le nombre í µí µ'-í µí µ' est appelé déterminant des vecteurs 𝐼⃗ et í µâƒ—.

On note : í µí µí µ

Propriété : Dire que 𝐼⃗ et í µâƒ— sont colinéaires revient à dire que í µí µí µ

=0. Méthode : Vérifier si deux vecteurs sont colinéaires à l'aide du déterminant

Vidéo https://youtu.be/MeHOuwy81-8

Dans chaque cas, vérifier si les vecteurs 𝐼⃗ et í µâƒ— sont colinéaires. a) 𝐼⃗. -6 10 / et í µâƒ—. 9 -15 / b) 𝐼⃗. 4 9 / et í µâƒ—. 11 23

Correction

a) í µí µí µ =R -69 10-15 R= -6 -15 -10×9=90-90=0 Les vecteurs 𝐼⃗ et í µâƒ— sont donc colinéaires. b) í µí µí µ =R 411
923

R=4×23-9×11=92-99=-7≠0

Les vecteurs 𝐼⃗ et í µâƒ— ne sont donc pas colinéaires.

3. Applications

Propriétés :

1) Dire que les droites (í µí µ) et (í µí µ) sont parallèles revient à dire que les vecteurs í µí µ

et í µí µ sont colinéaires.

2) Dire que les points í µ, í µ et í µ sont alignés revient à dire que les vecteurs í µí µ

et í µí µ sont colinéaires.

Méthode : Appliquer la colinéarité

Vidéo https://youtu.be/hp8v6YAQQRI

Vidéo https://youtu.be/dZ81uKVDGpE

6 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

On considère les points í µ.

-1 1 3 2 -2 -3 6 -1 / et í µ. 5 0 a) Démontrer que les droites (í µí µ) et (í µí µ) sont parallèles. b) Démontrer que les points í µ, í µ et í µ sont alignés.

Correction

a) í µí µ 3- -1 2-1 4 1 / et í µí µ 6- -2 -1- -3 A = . 8 2 í µí µí µSí µí µ T=R 48
12

R=4×2-8×1=8-8=0

Les vecteurs í µí µ

et í µí µ sont colinéaires. Donc les droites (í µí µ) et (í µí µ) sont parallèles.

Remarque :

On aurait pu également remarquer que les coordonnées de í µí µ et í µí µ sont proportionnelles pour en déduire que les vecteurs í µí µ et í µí µ sont colinéaires. b) í µí µ 3-5 2-0 -2 2 / et í µí µ 6-5 -1-0 1 -1 í µí µí µSí µí µ T=R -21 2-1

R=-2×

-1 -2×1=0

Les vecteurs í µí µ

et í µí µ sont colinéaires. Donc les points í µ, í µ et í µ sont alignés.

Partie 4 : Coordonnées du milieu d'un segment

Propriété : Soit deux points í µ.

/ et í µ. Le milieu í µdu segment [í µí µ] a pour coordonnées : X Y

Démonstration :

Considérons le parallélogramme construit à partir de í µ, í µ et í µ.

Soit í µ son centre.

Alors í µí µ

(ou í µ) a donc les mêmes coordonnées que celles du vecteur ) soit : Z [=X Y.

B O M A

7 sur 7

quotesdbs_dbs30.pdfusesText_36
[PDF] repère orthonormé triangle

[PDF] théorème de pythagore dans un repère orthonormé

[PDF] exercices corrigés sur les vecteurs seconde pdf

[PDF] repérage dans le plan seconde exercices corrigés pdf

[PDF] démonstration coordonnées du milieu d'un segment

[PDF] longueur segment avec coordonnées

[PDF] activité coordonnées du milieu d un segment

[PDF] algorithme distance entre deux points

[PDF] vecteur symétrique d un point

[PDF] système de coordonnées topographique

[PDF] système de coordonnées géographique

[PDF] système de coordonnées géographique pdf

[PDF] coordonnées planes

[PDF] systèmes de coordonnées gps

[PDF] système de coordonnées lambert