[PDF] COURS OPTIMISATION Cours en Master M1 SITN Ionel Sorin





Previous PDF Next PDF



COURS OPTIMISATION Cours en Master M1 SITN Ionel Sorin

COURS OPTIMISATION. Cours en Master M1 SITN. Ionel Sorin CIUPERCA 4.2.3 Applications de la théorie du point selle à l'optimisation . . . . . . 51.



Cours-Optimisation.pdf

Jean-Baptiste Hiriart-Urruty Optimisation et analyse convexe (exercices cor- rigés). Cependant



Résumé dOptimisation

Résumé d'Optimisation. MI5 Master Pro 1`ere année 6 Optimisation avec contraintes ... Ceci un résumé des principaux résultats du cours d'optimisation.



COURS DOPTIMISATION [.2pc] ISIMA – F4 3ème année – Master

Dualité. Algorithmes. COURS D'OPTIMISATION. ISIMA – F4 3ème année – Master Recherche Maths. Jonas Koko. ISIMA. J. Koko. Cours d'Optimisation Convexe 



Optimisation cours

Optimisation (MML1E31). Notes de cours. Master 1 Mathématiques et Modélisation (MM). 2017-2018. Bruno GALERNE. Bureau 812-F bruno.galerne@parisdescartes.fr 



M1 MApI3 - UE OPTIMISATION Support de cours

cours ”Fondamentaux de la recherche opérationnelle” du Master 2 MApI3. Algorithmique de l'optimisation. Un algorithme associé au probl`eme (PX) consiste `a 



Optimisation et programmation dynamique

Ces notes sont un support pour le cours. Optimisation et programmation dynamique du Master 1 de mathématiques appliquées de l'Université Paris Dauphine.



Cours Optimisation

Cours Optimisation. Cours destiné aux étudiants de première année Master TP 4 : Résolution d'un problème d'optimisation linéaire sans contraintes.



D03-MI-2015-Optimisation et Contrôle

Etablissement : Université Sétif 1 Intitulé du master : Optimisation et Contrôle Cours TD



Exercices sur le cours “Optimisation et programmation dynamique” 1

Exercices sur le cours. “Optimisation et programmation dynamique”. 2020-2021. Master mention Mathématiques appliquées 1`ere année. Université Paris Dauphine.



[PDF] Cours-Optimisationpdf

L'optimisation consiste en la recherche du minimum (ou du maximum) d'une cer- taine quantité appelée coût ou objectif Dans ce cours on supposera que le 



[PDF] Cours en Master M1 SITN

Pour décrire (et éventuellement résoudre) un problème d'optimisation nous utilisons la modélisation mathématique La démarche de modélisation comporte 3 



[PDF] Manuel de Cours Optimisation - univ-ustodz

Ce manuscrit traite les notions de base de l'optimisation et s'adresse essen- tiellement au étudiants de Master 1 spécialité Automatique et Informatique



[PDF] Cours Optimisationpdf

Département de Génie Mécanique Cours Optimisation Cours destiné aux étudiants de première année Master Filière : Génie Mécanique Option : Construction



[PDF] Résumé du cours doptimisation

13 sept 2005 · Dans ce cours tous les résultats sont établis sur les problèmes de minimisation 1 1 Théorème de Weierstrass Théorème 1 1 Si K est un compact 



[PDF] Cours doptimisation ENSAI Rennes

11 déc 2019 · dessins en cours 1 2 1 Contraintes d'égalité et d'inégalité Si K = ? il s'agit d'un probl`eme d'optimisation sans contrainte L'en-



[PDF] Introduction `a loptimisation

2 Page 3 Nous étudierons dans ce cours uniquement des probl`emes d'optimisation non linéaire 1 2 2 Optimisation non linéaire On distingue trois types de 



[PDF] M1 MApI3 - UE OPTIMISATION Support de cours

cours ”Fondamentaux de la recherche opérationnelle” du Master 2 MApI3 Algorithmique de l'optimisation Un algorithme associé au probl`eme (PX) consiste `a 



[PDF] Résumé dOptimisation

Résumé d'Optimisation MI5 Master Pro 1`ere année 6 Optimisation avec contraintes Ceci un résumé des principaux résultats du cours d'optimisation



[PDF] Cours doptimisation

- Représentation 3D (cf pdf ) - Courbes de niveau : La courbe de niveau ? d'une fonction f est défini par l'ensemble des points ( 

  • Quelles sont les méthodes d'optimisation ?

    La fonction à optimiser s'écrit sous la forme z=ax+by+c, z = a x + b y + c , où x et y sont les variables et où z représente la quantité qu'on cherche à maximiser ou à minimiser.
  • Comment calculer l'optimisation ?

    Théorème 2.1 Un fonction f est convexe si et seulement si, pour tout (x, y) ? (dom(f))2 et ? ? 0 tels que y + ?(y ? x) ? dom(f), f satisfait : f(y + ?(y ? x)) ? f(y) + ?(f(y) ? f(x)).
COURS OPTIMISATION Cours en Master M1 SITN Ionel Sorin

COURS OPTIMISATION

Cours en Master M1 SITN

Ionel Sorin CIUPERCA

1

Table des matières

1 Introduction 4

2 Quelques rappels de calcul différentiel, analyse convexe et extremum 5

2.1 Rappel calcul différentiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Quelques Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Quelques rappels sur le calcul différentiel . . . . . . . . . . . . . . . 6

2.1.3 Rappel formules de Taylor . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Quelque rappels sur le matrices carrées réelles . . . . . . . . . . . . 11

2.2 Convexité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Fonctions convexes, strictement convexes, fortement convexes . . . . 11

2.2.2 Exemples des fonctions convexes, strictement convexes et fortement

convexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Fonctions coercives . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Conditions nécéssaires et suffisantes de minimum . . . . . . . . . . . . . . 17

2.4 Existence et unicité d"un point de minimum . . . . . . . . . . . . . . . . . 21

3 Optimisation sans contraintes 23

3.1 Méthodes de relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Description de la méthode . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.2 Cas particulier des fonctions quadratiques . . . . . . . . . . . . . . 27

3.2 Méthodes de gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Méthodes de gradient à pas optimal . . . . . . . . . . . . . . . . . . 29

3.2.2 Autres méthodes du type gradient . . . . . . . . . . . . . . . . . . . 30

3.3 La méthode des gradients conjugués . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Le cas quadratique . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 Cas d"une fonctionJquelconque . . . . . . . . . . . . . . . . . . . 38

4 Optimisation avec contraintes 39

4.1 Rappel sur les multiplicateurs de Lagrange . . . . . . . . . . . . . . . . . . 40

4.2 Optimisation sous contraintes d"inégalités . . . . . . . . . . . . . . . . . . . 41

4.2.1 Conditions d"optimalité de premier ordre : multiplicateurs de Karush-

Kuhn-Tucker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.2 Théorie générale du point selle . . . . . . . . . . . . . . . . . . . . . 49

2

4.2.3 Applications de la théorie du point selle à l"optimisation . . . . . . 51

4.2.4 Le cas convexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Algorithmes de minimisation avec contraintes . . . . . . . . . . . . . . . . 53

4.3.1 Méthodes de relaxation . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.2 Méthodes de projection . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.3 Méthodes de pénalisation exterieure . . . . . . . . . . . . . . . . . . 59

4.3.4 Méthode d"Uzawa . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3

Chapitre 1

Introduction

En généraloptimisersignifie le fait de chercher une configuration optimale d"un sys-

tème, c"est à dire, chercher la meilleure configuration parmi tous les configurations possibles

du système et ceci, par rapport à un critère donné. Pour décrire (et éventuellement résoudre) un problème d"optimisation nous utilisons la modélisation mathématique. La démarche de modélisation comporte 3 étapes : Etape 1.Choisir lesvariables de décision, qui sont les composantes du système sur lesquelles on peut agir. On supposera dans ce cours qu"il y a un nombre finit notén2IN

de variables de décision, chacune de ces variables étant un nombre réel. Alors les variables

de décision seront représentés par un vecteurx= (x1;x2;xn)T2IRn(vecteur colonne). Etape 2.Décrirel"étatdu système, étant donnée une configuration des variables de décision. Ceci revient mathématiquement à se donner une fonctionJ:IRn!IRqui s"appellefonction objectifoufonction coûtet que nous voulons rendre la plus petite possible ou la plus grande possible. Etape 3.Décrire lescontraintesque les variables de décision satisfont. Ceci revient à définir un ensemble de contraintesUIRnet imposer d"avoirx2U. Pour résumer on peut dire que pour décrire un problème d"optimisation on se donne

1. Une fonctionJ:IRn7!IR(fonction coût)

2. Un ensembleUIRn(ensemble des contraintes)

On cherche à minimiserJsurU, c"est à dire, on cherchex2Utel que

J(x) = minx2UJ(x)

ou équivalent

J(x)J(x);8x2U:

Motivation et exemples pratiques :en classe

4

Chapitre 2

Quelques rappels de calcul différentiel,

analyse convexe et extremum

2.1 Rappel calcul différentiel

2.1.1 Quelques Notations

1. Pour toutn2IN;IRndésigne l"espaceeuclidienIRIRIR( "produitnfois").

En général un vecteurx2IRnsera notéx= (x1;x2;xn)T(vecteur colonne).

2. On notee1;e2;enles éléments de labase canoniquedeIRn, oùeiest le vecteur

deIRndonné par : (ei)j=ij=0sij6=i

1sij=i;8i;j= 1;2n(2.1)

(ij=symboles deKronecker).

3. Pour tousx;y2IRnon note par< x;y >2IRleproduit scalairedexety, qui

est donné par < x;y >=nX i=1x iyi: Deux vecteursx;y2IRnsontorthogonaux(on noterax?y) si< x;y >= 0.

4. Pour toutx2IRnon note parkxk 0lanorme euclidiennedex, donnée par

kxk=p< x;x >=v uutn X i=1x 2i: Rappellons lespropriétés d"une norme(donc aussi de la norme euclidienne) : i)kxk=jjkxk 82IR;8x2IRn ii)kx+yk kxk+kyk 8x;y2IRn iii)k0k= 0etkxk>0six2IRn f0g. 5

5. Pour tousx2IRnetr >0on notera parB(x;r)laboule ouvertedu centrexet

rayonr, donnée par

B(x;r) =fy2IRn;kyxk< rg:

6. Si x(k) k2INest une suite dansIRnetxest un élément deIRnon dit quex(k) convergeversx(notéex(k)!x) sikx(k)xk !0. Rappellons que nous avons :x(k)!xsi et seulement six(k) i!xienIRoùx(k) i(respectivementxi) est lai-ème composante dex(k)(respectivementx).

7. SoitUIRn.

- On définitl"intérieurdeUcomme l"ensemble des élémentsx2Upour lesquels il exister >0tel queB(x;r)U. - On dit queUestouvertsi8x2U9r >0tel queB(x;r)U. - On dit queUestfermési pour tout suitefx(k)g Utel quex(k)!x2IRnon ax2U.

8. Sia;b2IRnon note[a;b]le sous-ensemble deIRndonné par

[a;b] =fa+t(ba)(1t)a+tb; t2[0;1]g: L"ensemble[a;b]est aussi appelléle segmentreliantaàb.

Remarques :

[a;b] = [b;a](Exo!) Sia;b2IRaveca < bon retrouve la notation[a;b]pour l"intervalle des nombres x2IRtels queaxb.

9. Rappellons aussi l"inégalité de Cauchy-Schwarz :

j< x; y >j kxk kyk 8x;y2IRn:

2.1.2 Quelques rappels sur le calcul différentiel

On considère dans cette partiemetndeux nombres deN(très souvent dans ce cours on auram= 1).

1. SoitUun sous-ensemble deIRnetf:U7!IRm.

On dit quefestcontinueenx2Usif(x(k))!f(x)pour toute suitex(k)U telle quex(k)!x. On dit quefest continue surUsifest continue en tout pointx2U. Remarque :Sif= (f1;f2;fm)avecf1;f2;fm:U!IRalorsfest continu enx2Usi et seulement sif1;f2;fmsont continues enx.

Pour tous les poins suivants on va supposer que

est un ouvert de IRnetfest une fonctionf: !IRm. 6

2. Pour toutx2

eth2IRnon note (quand9) @f@h (x) = limt7!01t [f(x+th)f(x)] (c"est ladérivée directionnelledefenxdans la directionh).

Remarques :

i)@f@0(x) = 0: ii)Sif= (f1;f2;fn)T2IRnavecf1;f2;fm: !IRalors @f@h (x) =@f1@h (x);@f2@h (x);@fm@h (x) T

3. Pour toutx2

et touti2 f1;2;;ngon note (quand9) @f@x i(x) =@f@e i(x) = limt7!01t [f(x+tei)f(x)] (c"est ladérivée partielledefenxpar rapport à la variablexi.)

En particulier, sin= 1on notef0(x) =@f@x

1(x) = limt!01t

[f(x+t)f(x)] = lim y!x1yx[f(y)f(x)]

4. Pour toutx2

on note (quand9)Jf(x) =lamatrice Jacobiennedefenxqui est un élément deMm;n(IR)définie par (Jf(x))ij=@fi@x j(x)2IR8i= 1;m;8j= 1;n: Legradientdefenxest défini comme la transposée de la matrice Jacoblenne de fenx: rf(x) = (Jf(x))T2 Mn;m(IR): Remarque importante :Dans le cas particulierm= 1(doncf: !IR) alors en considérant tout élément deMn;1comme un vector colonne deIRn, on va dire que rf(x)est le vecteur colonne rf(x) =@f@x 1@f@x

2;@f@x

n T 2IRn:

Rappellons la formule :

@f@h (x) =8x2

8h2IRn:

5. Sif:

!IR(icim= 1) on dit qu"un pointx2 est unpoint critiquepour la fonctionfsirf(x) = 0. 7

6. Pour toutx2

eti;j2 f1;2;ngon note (quand9) 2f@x i@xj(x) =@@x i @f@x j (x)2IRm dérivée partielle à l"ordre 2.

Notation :pouri=jon écrira@2f@

2xi(x)à la place de@2f@x

i@xi(x).

7. Dans le casm= 1on note pour toutx2

(quand9)r2f(x) =la matrice carrée 2 M n(IR)donnée par r2f(x) ij=@2f@x i@xj(x);8i;j= 1;2;n: (r2f(x)s"appelle aussila matrice Hessiennedefenx).

8. On dit quefest de classeCpsur

(on noteraf2Cp( )) pourp= 1oup= 2 si les dérivées partielles desfjusqu"à l"ordrepexistent et sont continues sur . Par extension on dit quefest de classeC0sur sifest continue sur

9. On a le Théorème de Schwarz : sif2C2(

)alors 2f@x i@xj(x) =@2f@x j@xi(x)8x2 ;8i;j= 1;n (c"est à dire, la matricer2f(x)est symmétrique).

10. (Lien entrer;Jfetr2) : Sif:

!IRest de classeC2alors r

2f(x) =Jrf(x) =rJf(x)8x2

(la matrice Hessienne defest le Jacobien du gradient defou le gradient de la

Jacobienne def).

11. (Composition) Soient

IRn; UIRmavec

;Uouvertsf: !IRm; g:U! IR pavecp2INetf( )U. Considérons la fonction composéegf: !IRp. i)Sifetgsont continues alorsgfest continue. ii)Sifetgsont de classeC1alorsgfest de classeC1et on a l"égalité matricielle J gf(x) =Jg(f(x))Jf(x)8x2

Conséquences :

i)Sim=p= 1alors r(gf)(x) =g0(f(x))rf(x): i)Sin=p= 1alors (gf)0(x) = : 8

Proposition 2.1.Nous avons

r

2f(x)h=r8x2

;8h2IRn:

où le premier gradient dans le membre de droite de l"égalité est considéré par rapport à la

variablex.

Démonstration.On a :

@@x i=@@x i nX j=1@f@x j(x)hj! =nX j=1@ 2f@x ixj(x)hj=r2f(x)h i:Quelques exemples importants :

1. Sif:IRn!IRmest une fonctionconstantealorsrf= 0etJf= 0. On a aussi

évidementr2f= 0dans le casm= 1.

2. Soitf:IRn!IRmdéfinie par

f(x) =Ax8x2IRn oùA2 Mm;n(IR)est une matrice donné (c"est à dire,fest une fonctionlinéaire).

Il est facile de voir qu"on a

J f(x) =A8x2IRn (la matrice Jacobienne est constante). Dans la cas particulierm= 1une fonction linéaire générale peut être écrite sous la forme f(x) =< a; x >8x2IRn oùa2IRnest un vecteur donné. Il est clair alors que rf=a et r

2f= 0:

3. Soitf:IRn!IRdonnée par

f(x) =< Ax; x >8x2IRn; oùA2 Mn(IR)est un matrice carrée, réelle, de taillen(c"est à dire,fest laforme quadratiqueassociée à la matriceA). Alors pour unp2 f1;2;ngfixé, on peut

écrire

f(x) =nX i;j=1A ijxixj=Appx2p+nX j=1;j6=pA pjxpxj+nX i=1;i6=pA ipxixp+nX i;j=1;i6=p;j6=pA ijxixj 9 ce qui nous donne @f@x p= 2Appxp+nX j=1;j6=pA pjxj+nX i=1;i6=pA ipxi=nX j=1A pjxj+nX i=1A ipxi= (Ax)p+(ATx)p:

Nous avons donc obtenu :

rf(x) = (A+AT)x;8x2IRn:

En utilisant la formuler2f=Jrfon déduit

r

2f(x) =A+AT;8x2IRn

(donc la hessienne defest constante).quotesdbs_dbs32.pdfusesText_38
[PDF] exercices corrigés de convexité et optimisation

[PDF] exercices corrigés doptimisation pdf

[PDF] cours doptimisation pour économistes

[PDF] cours optimisation sans contrainte

[PDF] resume cours optique geometrique

[PDF] cours de physique optique cours et exercices corrigés pdf

[PDF] examen corrigé optique ondulatoire

[PDF] résumé cours optique ondulatoire

[PDF] physique optique cours complet

[PDF] controle optique 1ere s

[PDF] orientation scolaire et professionnelle définition

[PDF] oxydoréduction cours bac pro

[PDF] programme daeu b physique

[PDF] programme daeu a

[PDF] cours physique daeu b pdf