[PDF] Introduction aux Equations aux Dérivées Partielles





Previous PDF Next PDF



Chapitre 3 - Dérivées partielles différentielle

http://www.math.univ-toulouse.fr/~jroyer/TD/2013-14-L2PS/L2PS-Ch3.pdf



Comprendre les dérivées partielles et leurs notations

Pour calculer la dérivée partielle de f suivant la première variable x on fixe non nul. Soit ? un ouvert de Rd. Soit g: A Ñ Rn



Introduction aux Equations aux Dérivées Partielles

On introduira au fur et `a mesure quelques notions1 sur les fonctions de plu- sieurs variables réelles. On se limite pour les énoncés au cas de fonctions de.



Sur les Equations aux Dérivées Partielles de la Physique

du magnetisme permanent AV n'est pas nul



Dérivées partielles dune fonction de plusieurs variables

La dérivée partielle de la fonction f par rapport à x en (x y) est la dérivée de la Si on inverse l'ordre des opérations



Equations aux dérivées partielles (EDP) Méthode de résolution des

21 Agu 2017 A l'instant initial le courant dans la bobine est nul et on ... Pour cela



Math206 – Equations aux Dérivées Partielles Feuille dExercices 1

Exercice 1.4.— Soit f une application de classe C1 sur R2. Calculer les dérivées (éventuellement partielles) des fonctions suivantes : 1. g( 



Introduction aux Équations aux Dérivées Partielles Étude théorique

Pour une équation à coefficients constants si le second membre est de la forme f(x) = e?xPn(x) où Pn est un polynôme de degré n : 1er cas : si ? 6= r = b a.



Introduction aux équations différentielles et aux dérivées partielles

nul)) y sur I0 est une solution de l'équation (1.13) si et seulement si u des dérivées partielles du premier ordre en tout point de ? on appelle ...



1 Courbes de niveau : 2 Dérivées partielles

`a un logiciel1qui lui-même utilise pour cela les dérivées partielles de la dont le produit scalaire avec le vecteur gradient est nul comme par exemple.



[PDF] Comprendre les dérivées partielles et leurs notations

Pour calculer la dérivée partielle de f suivant la première variable x on fixe y puis on considère l'application x ÞÑ sinpxy2 q puis on calcule sa dérivée 



[PDF] Introduction aux Equations aux Dérivées Partielles

Une EDP est alors une relation entre les variables et les dérivées partielles de u 1 2 1 Dérivées partielles On introduira au fur et `a mesure quelques 



[PDF] Dérivées partielles différentielle fonctions de classe C

Le but de ce chapitre est de généraliser la notion de dérivée pour une fonction f de plusieurs variables L'objectif est évidemment de donner une définition 



[PDF] Introduction aux Équations aux Dérivées Partielles Étude théorique

On peut difficilement étudier les équations aux dérivées partielles (E D P ) dans une totale généralité comme on peut le faire pour les équation 



[PDF] Fonctions de deux variables

Dérivées partielles Pour une fonction de deux variables il y a deux dérivées une ”par rapport `a x” et l'autre ”par rapport `a y” Les formules sont (`a 



[PDF] Équations aux dérivées partielles - Dunod

Cet ouvrage est une introduction à l'étude des équations aux dérivées partielles Il est destiné aux étudiants de niveau L3 et M1 des écoles d'ingénieurs et 



[PDF] Dérivées partielles dune fonction de plusieurs variables

La dérivée partielle de la fonction f par rapport à x en (x y) est la dérivée de la fonction d'une seule variable réelle x ? f (x y) où y est constant



[PDF] Calcul différentiel - Exo7 - Cours de mathématiques

Pour une fonction de plusieurs variables il y a une dérivée pour chacune des variables qu'on appelle dérivée partielle L'ensemble des dérivées partielles 



[PDF] Équations aux dérivées partielles et théorie des fonctions - Numdam

fonctions et des équations aux dérivées partielles qui s'y rattachent ment nul pour des déplacements d'x s'effectuant dans Sr



[PDF] Équations aux dérivées partielles - WikiDocs Université de Lorraine

Équations aux dérivées partielles Polycopié rédigé par Antoine Henrot Cours de l'option IM Semestre 7 : 2016-2017 Antoine Henrot Ecole des Mines de 

  • Comment calculer les dérivées partielles ?

    Les dérivées partielles d'une fonction de plusieurs variables indiquent comment varie la fonction lorsque l'on fait varier une seule des variables.
  • Comment résoudre une equation aux dérivées partielles ?

    On appelle ordre d'une EDP l'ordre de la plus grande dérivée présente dans l'équation. Une EDP est linéaire si l'équation est linéaire par rapport aux dérivées partielles de la fonction inconnue.

Introduction aux Equations aux D´eriv´ees

Partielles

B. Helffer `a partir du texte ´etabli par Thierry Ramond

D´epartement de Math´ematiques

Universit´e Paris-Sud

Version de Janvier-Mai 2007

2

Table des mati`eres

1 Qu"est-ce qu"une EDP? 9

1.1 Equations diff´erentielles ordinaires . . . . . . . . . . . . . . . . 9

1.2 Equations aux D´eriv´ees Partielles . . . . . . . . . . . . . . . . 12

1.2.1 D´eriv´ees partielles . . . . . . . . . . . . . . . . . . . . . 12

1.2.2 EDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Premi`eres EDP . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.1 Exemple 1 . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.2 Exemple 2 . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.3 Exemple 3 . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Discussion sur la notion de probl`eme bien pos´e . . . . . . . . . 16

1.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5.1 Equations diff´erentielles . . . . . . . . . . . . . . . . . 17

1.5.2 D´eriv´ees partielles . . . . . . . . . . . . . . . . . . . . . 18

1.5.3 EDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Syst`emes diff´erentiels et ´equations diff´erentielles 19

2.1 En guise d"introduction . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 En th´eorie des circuits ´electriques . . . . . . . . . . . . 19

2.1.2 En m´ecanique classique . . . . . . . . . . . . . . . . . . 19

2.1.3 R´eduction `a un probl`eme du premier ordre . . . . . . . 20

2.1.4 Quelques mots sur la th´eorie de Cauchy . . . . . . . . 21

2.1.5 Quelques exemples tr`es simples . . . . . . . . . . . . . 23

2.2 Syst`emes diff´erentiels `a coefficients constants . . . . . . . . . . 24

2.2.1 Propri´et´es g´en´erales . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Etude du syst`eme dans le cas o`uAa des racines r´eelles

distinctes . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.3 Syst`emes 2×2 homog`enes du premier ordre . . . . . . 27

2.3 Traduction pour les ´equations diff´erentielles d"ordre n . . . . . 31

2.3.1 Equations diff´erentielles homog`enes. . . . . . . . . . . . 31

2.3.2 La m´ethode de variation des constantes . . . . . . . . . 32

2.4 Syst`emes g´en´eraux . . . . . . . . . . . . . . . . . . . . . . . . 34

3

4TABLE DES MATI`ERES

2.4.1 Suivi du syst`eme par changement de base . . . . . . . 35

2.4.2 Cas d"une matrice triangulaire . . . . . . . . . . . . . . 35

2.4.3 M´ethode g´en´erale . . . . . . . . . . . . . . . . . . . . . 35

2.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 EDP lin´eaires du premier ordre 37

3.1 Quelques notions suppl´ementaires autour des d´eriv´ees partielles. 37

3.1.1 Continuit´e . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.2 D´eriv´ees directionnelles . . . . . . . . . . . . . . . . . . 38

3.1.3 Applications de classeCk. . . . . . . . . . . . . . . . 40

3.2 Les ´equations de transport . . . . . . . . . . . . . . . . . . . . 40

3.3 Equations `a coefficients constants . . . . . . . . . . . . . . . . 42

3.3.1 M´ethode des caract´eristiques . . . . . . . . . . . . . . . 42

3.3.2 M´ethode du changement de variables . . . . . . . . . . 44

3.4 Equations `a coefficients variables . . . . . . . . . . . . . . . . 45

3.4.1 Champs de vecteurs . . . . . . . . . . . . . . . . . . . 45

3.4.2 Un probl`eme de Cauchy pour l"´equation (3.9) . . . . . 47

3.5 Un exemple d"´equation non-lin´eaire : Equation de Burgers . . 48

3.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6.1 EDP du premier ordre `a coefficients constants . . . . . 50

3.6.2 Courbes int´egrales de champs de vecteurs . . . . . . . . 51

3.6.3 EDP du premier ordre `a coefficients non-constants . . . 51

4 L"´equation des ondes sur un axe 53

4.1 Le mod`ele physique : cordes vibrantes . . . . . . . . . . . . . . 53

4.2 Solutions de l"´equation des ondes . . . . . . . . . . . . . . . . 55

4.2.1 Solution g´en´erale . . . . . . . . . . . . . . . . . . . . . 55

4.2.2 La formule de D"Alembert . . . . . . . . . . . . . . . . 56

4.3 Causalit´e et conservation de l"´energie . . . . . . . . . . . . . . 57

4.3.1 Vitesse de propagation finie . . . . . . . . . . . . . . . 57

4.3.2 Energie . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Quelques th´eor`emes de base sur les int´egrales de fonction d´ependant

d"un param`etre . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 L"´equation de Laplace et principe du maximum 67

5.1 Extrema d"une fonction de deux variables . . . . . . . . . . . . 67

5.1.1 Fonctions d"une variable . . . . . . . . . . . . . . . . . 67

5.1.2 Fonctions de deux variables . . . . . . . . . . . . . . . 70

5.2 G´en´eralit´es sur l"´equation de Laplace . . . . . . . . . . . . . . 72

5.3 Principe du Maximum . . . . . . . . . . . . . . . . . . . . . . 72

TABLE DES MATI

`ERES5

5.4 Propri´et´es d"invariance . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Le Laplacien en coordonn´ees polaires . . . . . . . . . . . . . . 75

5.6 Solutions particuli`eres : s´eparation des variables . . . . . . . . 77

5.7 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.7.1 Extrema . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.7.2 Fonctions harmoniques . . . . . . . . . . . . . . . . . . 80

5.7.3 Le principe du maximum . . . . . . . . . . . . . . . . . 80

6TABLE DES MATI`ERES

Avant-Propos

Notre compr´ehension des ph´enom`enes du monde r´eel et notre technolo- gie sont aujourd"hui en grande partie bas´ees sur les ´equations aux d´eriv´ees partielles, qui seront not´ees en abr´eg´e EDP dans la suite. C"est en effet grˆace `a la mod´elisation de ces ph´enom`enes au travers d"EDP que l"on a pu com- prendre le rˆole de tel ou tel param`etre, et surtout obtenir des pr´evisions parfois extrˆemement pr´ecises. L"´etude math´ematique des EDP nous a aussi appris `a faire preuve d"un peu de modestie : on a d´ecouvert l"impossibilit´e de pr´evoir `a moyen terme certains ph´enom`enes gouvern´es par des EDP non- lin´eaires - pensez au d´esormais c´el`ebre effet papillon : une petite variation des conditions initiales peut en temps tr`es long conduire `a des tr`es grandes variations. D"un autre cˆot´e, on a aussi appris `a "entendre la forme d"un tam- bour" : on a d´emontr´e math´ematiquement que les fr´equences ´emises par un tambour lors de la vibration de la membrane - un ph´enom`ene d´ecrit par une EDP, permettent de reconstituer parfaitement la forme du tambour. L"une des choses qu"il faut avoir `a l"esprit `a propos des EDP, c"est qu"il n"est en g´en´eral pas question d"obtenir leurs solutions explicitement! Ce que les math´ematiques peuvent faire par contre, c"est dire si une ou plusieurs solutions existent, et d´ecrire parfois tr`es pr´ecisement certaines propri´et´es de ces solutions. L"apparition d"ordinateurs extrˆemement puissants permet n´eanmoins au- jourd"hui d"obtenir des solutions approch´ees pour des ´equations aux d´eriv´ees partielles, mˆeme tr`es compliqu´ees. C"est ce qui s"est pass´e par exemple lorsque vous regardez les pr´evisions m´et´eorologiques, ou bien lorsque vous voyez les images anim´es d"une simulation d"´ecoulement d"air sur l"aile d"un avion. Le rˆole des math´ematiciens est alors de construire des sch´emas d"approximation, et de d´emontrer la pertinence des simulations en ´etablissant des estimations a priori sur les erreurs commises. Quand sont apparues les EDP? Elles ont ´et´e probablement formul´ees pour la premi`ere fois lors de la naissance de la m´ecanique rationnelle au cours du 17`eme si`ecle (Newton, Leibniz...). Ensuite le "catalogue" des EDP s"est enrichi au fur et `a mesure du d´eveloppement des sciences et en particulier de 7

8TABLE DES MATI`ERES

la physique. S"il ne faut retenir que quelques noms, on se doit de citer celui d"Euler, puis ceux de Navier et Stokes, pour les ´equations de la m´ecanique des fluides, ceux de Fourier pour l"´equation de la chaleur, de Maxwell pour celles de l"electromagn´etisme, de Schr¨odinger et Heisenberg pour les ´equations de la m´ecanique quantique, et bien sˆur de Einstein pour les EDP de la th´eorie de la relativit´e. Cependant l"´etude syst´ematique des EDP est bien plus r´ecente, et c"est seulement au cours du 20`eme si`ecle que les math´ematiciens ont commenc´e `a d´evelopper l"arsenal n´ecessaire. Un pas de g´eant a´et´e accompli par L. Schwartz lorsqu"il a fait naˆıtre la th´eorie des distributions (autour des ann´ees 1950), et un progr`es au moins comparable est du `a L. H¨ormander pour la mise au point du calcul pseudodiff´erentiel (au d´ebut des ann´ees 1970). Il est certainement bon d"avoir `a l"esprit que l"´etude des EDP reste un domaine de recherche tr`es actif en ce d´ebut de 21`eme si`ecle. D"ailleurs ces recherches n"ont pas seulement un retentissement dans les sciences appliqu´ees, mais jouent aussi un rˆole tr`es important dans le d´eveloppement actuel des math´ematiques elles-mˆemes, `a la fois en g´eometrie et en analyse. Venons-en aux objectifs de ce cours. On souhaite que, apr`es avoir confort´e leurs connaissances des´equations diff´erentielles ordinaires, les´etudiants prennent contact avec les EDP et quelques unes des m´ethodes et des probl`ematiques qui s"y rattachent. Bien sˆur, il s"agit d"un cours destin´e aux ´etudiants de fin de premier cycle, et on esp`ere en mˆeme temps renforcer les connaissances et les savoirs-faire des ´etudiants en analyse math´ematique. De ce point de vue, et mˆeme au niveau relativement ´el´ementaire o`u l"on se place, les EDP constituent un terrain de jeu (de r´ecr´eation) extrˆemement riche et vaste! Le contenu de ce cours est tr`es largement inspir´e du livre de W.A. Strauss : Partial Differential Equations : An Introduction, John Wiley, 1992. On a tenu cependant `a ce que cette pr´esentation des EDP soit aussi l"occasion de mettre en action certains outils math´ematiques, et l"on introduit les no- tions n´ecessaires au fur et `a mesure des besoins : ´el´ements sur les ´equations diff´erentielles ordinaires, calcul diff´erentiel des fonctions de plusieurs variables

r´eelles, fonctions d´efinies par des int´egrales g´en´eralis´ees, s´eries de Fourier...

Chapitre 1

Qu"est-ce qu"une EDP?

1.1 Equations diff´erentielles ordinaires

Pour fixer les id´ees, on rappelle d"abord quelques notions `a propos des ´equa- tions diff´erentielles ordinaires (EDO). Une ´equation diff´erentielle est une re- lation du type

F(x,u(x),u?(x),u??(x),...,u(n)(x)) = 0,(1.1)

entre la variablex?Ret les d´eriv´ees de la fonction inconnueuau pointx. La fonctionFest une fonction de plusieurs variables (x,y)?→F(x,y) o`ux est dansR(ou parfois dans un intervalle deR) ety= (y0,...,yn) est dans R n+1. L"exemple le plus simple est celui du mouvement d"un corps (identifi´e) `a un point sur la droite. La variablexcorrespond alors au temps et le mouvement est d´ecrit par l"´equation : u ??(x) =f(u(x)),(1.2) (c"est la c´el`ebre formule ?F=mγ, o`uγest l"acc´el´eration). Ici la fonctionFqui intervient est ici la fonction I×R3?(x,y0,y1,y2)?→F(x,y0,y1,y2) =y2-f(y0). On note que la fonctionFne d´epend pas dexet dey1. Maintenant, sifest continue, on peut toujours trouvervcontinˆument d´erivable telle que : f(y) =-v?(y). 9

10CHAPITRE 1. QU"EST-CE QU"UNE EDP?

On peutalors montrer, en d´erivant par rapport `ax, la fonction "´energie" : x?→12 u?(x)2+v(u(x)), avecusolution de (1.2), que celle-ci est constante au cours du temps : 12 u?(x)2+v(u(x)) =E0, o`uE0est calcul´ee par la valeur de l"´energie au temps initialx0. On obtient une nouvelle ´equation (plus facile `a r´esoudre) qui a la forme ci-dessus

G(x,u(x),u?(x)) = 0,

avec cette fois-ci :

G(x,y0,y1) :=12

y21+v(y0)-E0. Expliquons bri`evement pourquoi la r´esolution en est plus simple.

On r´e´ecrit l"´equation sous la forme

u ?(x) =±?2(E0-v(u(x)).(1.3) Si on suppose queu?(x0)?= 0 et que le terme de droite ne s"annule pas, onquotesdbs_dbs15.pdfusesText_21
[PDF] dérivée fonction composée tableau

[PDF] dérivée d'une fonction composée ? deux variables

[PDF] dérivée de fonction composée terminale s

[PDF] fonction polynome de degré 3 stmg

[PDF] fraction fonction dérivée

[PDF] tableau des dérivées u v

[PDF] tableau dérivée 1ere s

[PDF] dérivé de f au carré

[PDF] dérivée e^u

[PDF] dérivé de u^n

[PDF] u'u primitive

[PDF] dérivé de ln x

[PDF] dérivée de 1/x^2

[PDF] dérivée de x/2

[PDF] dérivée de racine de x