[PDF] Introduction aux équations différentielles et aux dérivées partielles





Previous PDF Next PDF



Chapitre 3 - Dérivées partielles différentielle

http://www.math.univ-toulouse.fr/~jroyer/TD/2013-14-L2PS/L2PS-Ch3.pdf



Comprendre les dérivées partielles et leurs notations

Pour calculer la dérivée partielle de f suivant la première variable x on fixe non nul. Soit ? un ouvert de Rd. Soit g: A Ñ Rn



Introduction aux Equations aux Dérivées Partielles

On introduira au fur et `a mesure quelques notions1 sur les fonctions de plu- sieurs variables réelles. On se limite pour les énoncés au cas de fonctions de.



Sur les Equations aux Dérivées Partielles de la Physique

du magnetisme permanent AV n'est pas nul



Dérivées partielles dune fonction de plusieurs variables

La dérivée partielle de la fonction f par rapport à x en (x y) est la dérivée de la Si on inverse l'ordre des opérations



Equations aux dérivées partielles (EDP) Méthode de résolution des

21 Agu 2017 A l'instant initial le courant dans la bobine est nul et on ... Pour cela



Math206 – Equations aux Dérivées Partielles Feuille dExercices 1

Exercice 1.4.— Soit f une application de classe C1 sur R2. Calculer les dérivées (éventuellement partielles) des fonctions suivantes : 1. g( 



Introduction aux Équations aux Dérivées Partielles Étude théorique

Pour une équation à coefficients constants si le second membre est de la forme f(x) = e?xPn(x) où Pn est un polynôme de degré n : 1er cas : si ? 6= r = b a.



Introduction aux équations différentielles et aux dérivées partielles

nul)) y sur I0 est une solution de l'équation (1.13) si et seulement si u des dérivées partielles du premier ordre en tout point de ? on appelle ...



1 Courbes de niveau : 2 Dérivées partielles

`a un logiciel1qui lui-même utilise pour cela les dérivées partielles de la dont le produit scalaire avec le vecteur gradient est nul comme par exemple.



[PDF] Comprendre les dérivées partielles et leurs notations

Pour calculer la dérivée partielle de f suivant la première variable x on fixe y puis on considère l'application x ÞÑ sinpxy2 q puis on calcule sa dérivée 



[PDF] Introduction aux Equations aux Dérivées Partielles

Une EDP est alors une relation entre les variables et les dérivées partielles de u 1 2 1 Dérivées partielles On introduira au fur et `a mesure quelques 



[PDF] Dérivées partielles différentielle fonctions de classe C

Le but de ce chapitre est de généraliser la notion de dérivée pour une fonction f de plusieurs variables L'objectif est évidemment de donner une définition 



[PDF] Introduction aux Équations aux Dérivées Partielles Étude théorique

On peut difficilement étudier les équations aux dérivées partielles (E D P ) dans une totale généralité comme on peut le faire pour les équation 



[PDF] Fonctions de deux variables

Dérivées partielles Pour une fonction de deux variables il y a deux dérivées une ”par rapport `a x” et l'autre ”par rapport `a y” Les formules sont (`a 



[PDF] Équations aux dérivées partielles - Dunod

Cet ouvrage est une introduction à l'étude des équations aux dérivées partielles Il est destiné aux étudiants de niveau L3 et M1 des écoles d'ingénieurs et 



[PDF] Dérivées partielles dune fonction de plusieurs variables

La dérivée partielle de la fonction f par rapport à x en (x y) est la dérivée de la fonction d'une seule variable réelle x ? f (x y) où y est constant



[PDF] Calcul différentiel - Exo7 - Cours de mathématiques

Pour une fonction de plusieurs variables il y a une dérivée pour chacune des variables qu'on appelle dérivée partielle L'ensemble des dérivées partielles 



[PDF] Équations aux dérivées partielles et théorie des fonctions - Numdam

fonctions et des équations aux dérivées partielles qui s'y rattachent ment nul pour des déplacements d'x s'effectuant dans Sr



[PDF] Équations aux dérivées partielles - WikiDocs Université de Lorraine

Équations aux dérivées partielles Polycopié rédigé par Antoine Henrot Cours de l'option IM Semestre 7 : 2016-2017 Antoine Henrot Ecole des Mines de 

  • Comment calculer les dérivées partielles ?

    Les dérivées partielles d'une fonction de plusieurs variables indiquent comment varie la fonction lorsque l'on fait varier une seule des variables.
  • Comment résoudre une equation aux dérivées partielles ?

    On appelle ordre d'une EDP l'ordre de la plus grande dérivée présente dans l'équation. Une EDP est linéaire si l'équation est linéaire par rapport aux dérivées partielles de la fonction inconnue.
Introduction aux équations différentielles et aux dérivées partielles Université Claude Bernard, Lyon ILicence Sciences, Technologies & Santé

43, boulevard 11 novembre 1918Spécialité Mathématiques

69622 Villeurbanne cedex, FranceL. Pujo-Menjouet

pujo@math.univ-lyon1.fr

Introduction

aux équations différentielles et aux dérivées partielles 1 2

Table des matières

I Equations différentielles 7

1 Méthodes de résolution explicite des équations différentielles "simples" 9

1.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

1.2 Réduction à une équation du premier ordre . . . . . . . . . . . . . . . . . . . . . .

11

1.3 Intégration d"équations différentielles d"un certain type - quelques techniques . . .

12

1.3.1 Equations à variables séparées (ou séparables) . . . . . . . . . . . . . . . .

12

1.3.2 Equations homogènes . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

1.3.3 Equations linéaires du premier ordre . . . . . . . . . . . . . . . . . . . . .

15

1.3.4 Equations de BERNOULLI . . . . . . . . . . . . . . . . . . . . . . . . .

17

1.3.5 Equations de LAGRANGE et de CLAIRAUT . . . . . . . . . . . . . . . .

17

1.3.6 Formulation générale -Equa. dif. totales - Facteurs intégrants . . . . . . . .

18

1.3.7 Equation des facteurs intégrants . . . . . . . . . . . . . . . . . . . . . . .

20

2 "Brève" théorie générale des équations différentielles 21

2.1 Problème de Cauchy en dimension finie . . . . . . . . . . . . . . . . . . . . . . .

21

2.2 Localisation des solutions du problème de Cauchy . . . . . . . . . . . . . . . . . .

22

2.3 Méthode d"approximation de Picard - Existence et Unicité locale . . . . . . . . . .

23

2.4 Unicité globale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25

2.5 Points d"Unicité Locale et Globale d"un problème de Cauchy . . . . . . . . . . . .

25

2.6 Théorèmes d"existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

3 Equations différentielles d"ordre supérieur 29

3.1 Problèmes avec conditions initiales et conditions aux bords . . . . . . . . . . . . .

29

3.1.1 Problèmes avec conditions initiales . . . . . . . . . . . . . . . . . . . . .

29

3.1.2 Problèmes avec conditions aux bords . . . . . . . . . . . . . . . . . . . .

30

3.1.3 Equations homogènes . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30

3.1.4 Opérateur différentiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

3.1.5 Principe de substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

3.1.6 Dépendance et indépendance linéaire . . . . . . . . . . . . . . . . . . . .

32

3.1.7 Solution d"équa. diff. pour les solutions linéairement indép. d"équa. diff.

linéaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.8 Solutions générales d"équations nonhomogènes . . . . . . . . . . . . . . .

33

3.2 Réduction d"ordre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33

3.3 Equation linéaire homogène avec coefficients constants . . . . . . . . . . . . . . .

35

3.3.1 Ordre 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

35
3

3.3.2 Ordre supérieur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

36

3.4 Coefficients indéterminés- Approche par superposition . . . . . . . . . . . . . . .

36

3.5 Coefficients indéterminés- Approche de l"annihilateur . . . . . . . . . . . . . . . .

37

3.5.1 Mise en facteurs d"opérateurs . . . . . . . . . . . . . . . . . . . . . . . .

37

3.5.2 Opérateur annihilateur . . . . . . . . . . . . . . . . . . . . . . . . . . . .

37

3.5.3 Coefficients indéterminés . . . . . . . . . . . . . . . . . . . . . . . . . . .

38

3.6 Variations des paramètres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

39

3.6.1 Ordre 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

39

3.6.2 Equations d"ordre supérieur . . . . . . . . . . . . . . . . . . . . . . . . .

40

3.7 Equation de Cauchy-Euler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

41

3.7.1 Equation homogène d"ordre 2 . . . . . . . . . . . . . . . . . . . . . . . .

41

3.8 Résoudre des systèmes d"équations linéaires par élimination . . . . . . . . . . . .

42

4 Séries solutions d"équations différentielles linéaires 43

4.1 Solution autour de points ordinaires . . . . . . . . . . . . . . . . . . . . . . . . .

43

4.1.1 Rappel sur les séries entières . . . . . . . . . . . . . . . . . . . . . . . . .

43

4.1.2 Solutions sous forme de séries entières . . . . . . . . . . . . . . . . . . .

44

4.2 Solutions autour des points singuliers . . . . . . . . . . . . . . . . . . . . . . . .

44

4.3 Deux équations spéciales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

45

5 Transformée de Laplace 47

5.1 Rappel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

47

5.2 Définition de la transformée de Laplace . . . . . . . . . . . . . . . . . . . . . . .

47

5.3 Transformée inverse et transformée de dérivées . . . . . . . . . . . . . . . . . . .

48

5.3.1 Transformée inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

48

5.3.2 Transformer une dérivée . . . . . . . . . . . . . . . . . . . . . . . . . . .

49

5.4 Résoudre les équations différentielles linéaires . . . . . . . . . . . . . . . . . . . .

50

5.5 Théorème de translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50

5.5.1 Translation sur l"axe dess. . . . . . . . . . . . . . . . . . . . . . . . . .

50

5.5.2 Translation sur l"axe dest. . . . . . . . . . . . . . . . . . . . . . . . . .

51

5.6 Propriétés additionnelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

51

5.6.1 Multiplier une fonction partn. . . . . . . . . . . . . . . . . . . . . . . .

51

5.6.2 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

51

5.6.3 Transformée d"une intégrale . . . . . . . . . . . . . . . . . . . . . . . . .

51

5.6.4 Equation intégrale de Volterra . . . . . . . . . . . . . . . . . . . . . . . .

52

5.6.5 Transformée de fonction périodique . . . . . . . . . . . . . . . . . . . . .

52

5.6.6 Fonction±-Dirac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

52

6 Systèmes différentiels linéaires 53

6.1 Théorie préliminaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

53

6.1.1 Systèmes homogènes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

54

6.1.2 Systèmes non-homogènes . . . . . . . . . . . . . . . . . . . . . . . . . .

55

6.2 Systèmes linéaires homogènes avec des coefficients constants . . . . . . . . . . . .

55

6.2.1 Valeurs propres et vecteurs propres . . . . . . . . . . . . . . . . . . . . .

55

6.3 Variation de la constante . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

57
4

6.3.1 Matrice fondamentale . . . . . . . . . . . . . . . . . . . . . . . . . . . .

57

6.3.2 Résultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

57

6.3.3 Variation de la constante . . . . . . . . . . . . . . . . . . . . . . . . . . .

57

6.4 Exponentielle d"une matrice . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

58

6.4.1 Systèmes homogènes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

58

6.4.2 Systèmes non homogènes . . . . . . . . . . . . . . . . . . . . . . . . . .

59

6.4.3 Utilisation de la transformée de Laplace . . . . . . . . . . . . . . . . . . .

59

II Equations aux dérivées partielles 61

7 Equation de la chaleur 63

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

63

7.2 Construction du modèle de la chaleur dans une time (1D) . . . . . . . . . . . . . .

64

7.2.1 Densité de l"énergie thermique . . . . . . . . . . . . . . . . . . . . . . . .

64

7.2.2 Energie de la chaleur . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

64

7.2.3 Conservation de l"énergie de la chaleur . . . . . . . . . . . . . . . . . . .

64

7.2.4 Température et chaleur spécifique . . . . . . . . . . . . . . . . . . . . . .

66

7.2.5 Energie thermique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

66

7.2.6 Loi de Fourier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

66
5 6

Première partie

Equations différentielles

7

Chapitre 1

Méthodes de résolution explicite des

équations différentielles "simples"

1.1 Définitions

Donnons tout d"abord quelques définitions essentielles pour commencer sur de bonnes bases.

Définition 1

Equation différentielle ordinaire.Une équation différentielle ordinaire (EDO) est

une relation entre la variable réellet, une fonction inconnuet7!y(t)et ses dérivéesy0,y00, ...,

y (n)au pointtdéfinie par F(t;y(t);y0(t);y00(t);:::;y(n)(t)) = 0 (on notera par abusF(t;y;y0;y00;:::;y(n)) = 0)(1.1) On dit que cette équation est scalaire siFest à valeurs dansR. (N.B. : on pourra utiliserxde temps en temps au lieu det, i.e.y(t)ouy(x))

Définition 2

Equation différentielle normale.On appelle équation différentielle normale d"ordre ntoute équation de la forme y (n)=f(t;y;y0;:::;y(n¡1))(1.2) Donnons un exemple pour mettre les idées au clair.

Exemple 1

Equation du premier ordre sous la forme normale

y

0=f(t;y) (oudy

dt =f(t;y))(1.3)

Donnons maintenant une classification par linéarité. Une EDO du type (1.1) d"ordrenest linéaire

si elle a la forme suivante : a noter que (1) tous lesy(i)sont de degré1, et (2) tous les coefficients dépendent au plus dex 9

Exemple 2

Dire si les équations différentielles suivantes sont linéaires ou non linéaires, et donner

leur ordre (on justifiera les réponses). i:(y¡x)dx+ 4xdy= 0ii: y00¡2y0+y= 0iii:d3y dx 3+xdy dx

¡5y=ex

iv:(1¡y)y0+ 2y=exv:d2y dx

2+ siny= 0vi:d4y

dx

4+y2= 0

Définition 3

Solution.On appelle solution (ou intégrale) d"une équation différentielle d"ordren sur un certain intervalleIdeR, toute fonctionydéfinie sur cet intervalleI,nfois dérivable en

tout point deIet qui vérifie cette équation différentielle surI. On notera en général cette solution

(y;I).

SiIcontient sa borne inférieure®, (resp. sa borne inférieure¯), ce sont des dérivées à droite

(resp. à gauche) qui interviennent au pointt=®(resp.t=¯). Intégrer une équation différentielle

consiste à déterminer l"ensemble de ses solutions.

Définition 4

Soient(y;I)et(ey;eI)deux solutions d"une même équation différentielle. On dit que (ey;eI)est un prolongement de(y;I)si et seulement siI½eIeteyjI=y.

Définition 5

Solution maximale, solution globale.SoientI1etI2, deux intervalles surRtels que I

1½I2. On dit qu"une solution(y;I1)est maximale dansI2si et seulement siyn"admet pas

de prolongement(ey;eI)solution de l"équation différentielle telle queI1&eI½I2. On dit qu"une

solution(y;I1)est globale dansI2si et seulement siyadmet un prolongementeysolution définie sur l"intervalleI2tout entier.

Remarque 1

Toute solution globale sur un intervalleIest maximale surI, mais la réciproque est fausse.

Exemple 3

(voir figure)W y1 y2 I 10

1.2 Réduction à une équation du premier ordre

Considérons l"EDO d"ordren, (n¸2),

F(t;y;y0;:::;y(n)) = 0;

où,yest à valeurs dansRm(on prendm= 1en général) etF:R£Rm£:::£Rm| {z n+1fois!Rp: On fait le changement d"inconnuesz= (y;y0;:::;y(n¡1)). On a alorsz2(Rm)n. On note alors z= (z1;z2;:::;zn), où chacun deszi=y(i¡1)2Rm,i= 1;:::;n. On se retrouve alors avec des relations entre leszi:

½z0i¡zi+1= 0; i= 1;2;:::;n¡1

F(t;y;y0;:::;y(n)) = 0:

On se ramène alors à une équation du premier ordre, à une variable etninconnues du type

G(t;z1;z2;:::;zn;z01;z02;:::;z0n) = 0:

Cas particulier

:n= 2(Fscalaire)

F(t;y;y0;y00) = 0:

Cette équation peut se ramener à une équation du premier ordre à deux inconnues,z1etz2:

½z01¡z2= 0;

F(t;z1;z2;z01;z02) = 0:

Exemple 4

Considérons l"équation

a(t)y00+b(t)y0+c(t)y=d(t); En considérantz1=yetz2=z, on peut écrire cette équation du second ordre sous la forme

½y0=z

b(t)y0+a(t)z0=¡c(t)y+d(t); soit encore

A(t)µy0

z =B(t)µy +C(t); en posantA(t) =µ1 0 ,B(t) =µ0 1 etC(t) =µ0 11

1.3 Intégration d"équations différentielles d"un certain type -

quelques techniques

1.3.1 Equations à variables séparées (ou séparables)

dity0=f(t;y). Le but est d"exprimerf(t;y)sous la formeg(t)h(y). Ce qui permettra de résoudre une équation du type y

0=g(t)h(y):

Les équations les plus simples sont de la forme y

0=f(t)(1.5)

c"est à direh´1etg(t) =f(t). On suppose quefest continue sur un intervalleI½Rd"intérieur non vide. Les solutions de (1.5) sont données alors pary(t) =Z f(t)dt+Cpour toutt2I,Cest une constante.

Définition 6

Equation à variables séparéesOn appelle, de façon générale, équation à variables

séparées toute équation de la forme b(y)y0=a(t)(1.6) oùaetbsont deux fonctions définies respectivement surJetKoùJetKsont des intervalles de R.

Théorème 1

Supposonsaetbcontinues respectivement surJetK. SoitIun intervalle deJ, alorsyest solution de (1.6) surIsi et seulement si

1.yest différentiable surI

2. Il existeC2R, constante telle queB(y(t)) =A(t) +C, pour toutt2Iavec

A(t) =Z

a(t)dt, (t2J) etB(t) =Z b(t)dt, (x2K).

Preuve :En TD.

Remarque :

Dans le cas général, si toute courbe définie parB(y) =A(t) +C, peut être pa- ramétrée de telle façon que les fonctionss7!(t(s);y(s))satisfont l"équation b(y(s))d ds y(s) =a(t(s))d ds t(s): On dit que c"est une "courbe intégrale" de l"équation (1.6). Le graphe de toute solution est une courbe intégrale, mais la réciproque n"est pas vraie. Rappel : lorsqu"on considère une équation différentielle du type y

0=f(t;y);

12 avecf2C1(I£A;R). Pour tout(x0;y0)2I£A, il existe un intervalleJ½Iavecx02Jet une application de classeC1unique':J!A, solution de l"équation telle que'(x0) =y0. Le graphe de cette solution y='(x) se nomme courbe intégrale de l"équation différentielle proposée.

Théorème 2

SiIest un intervalle ouvert deJ. Toute fonction continueysurIqui satisfait B(y(t)) =A(t) +Cpour toutt2I, pour une certaine valeur deCet qui satisfait la condition b(y(t))6= 0pour toutt2Iest une solution de (1.6) surI.

Exemple 5

Donner la (ou les) solution(s) maximale(s) de l"équation différentielle suivante y

0(t)y(t) =¡t

Définition 7

SoitÁ(t;y;y0) = 0une équation différentielle. On dit que c"est une équation à va-

riables séparables (pas encore séparées...), s"il existe un pavéK1£K2tel que cette équation

puisse s"écrire sous la formeb(y)y0=a(t),t2K1, ety2K2.

Exemple 6

Dire si l"équation différentielle est à variables séparables ou non :

2tyy0= (t¡1)(y2¡1)

1.3.2 Equations homogènes

Définition 8

Equation différentielle scalaire homogèneUne équation différentielle scalaire ho- mogène du premier ordre est une équation de la forme

F(t;y;y0) = 0(1.7)

oùFest continue, homogène de degré quelconquer(r2Z) par rapport àtety, c"est à dire que

F(kt;ky;y0) =krF(t;y;y0)

Exemple 7

Montrer que l"équation suivante est homogène, donner son degré :

2t2y0¡y2= 4ty

Proposition 1

Une équation scalaire normale du premier ordre homogène s"écrit pour toutt6= 0 sous la forme y 0=f(y t )(1.8) oùfest définie, continue surI½R. 13

Preuve :En TD.

Pour intégrer l"équation (1.8), on fait le changement d"inconnue suivant :y=ut, soit encore u=y t ,t6= 0, ety0(t) =u(t) +tu0(t). L"équation (1.8) devient alors tu

0=f(u)¡u:(1.9)

C"est une équation à variables séparables (sous certaines conditions) :

CAS 1 :

SoientK1,K2, deux intervalles (K1pourtetK2pouru) tels que0=2K1, etf(u)¡u6= 0surK2, alors surK1£K2, l"équation (1.9) est à variables séparables et s"écrit sous la forme u 0quotesdbs_dbs33.pdfusesText_39
[PDF] dérivée fonction composée tableau

[PDF] dérivée d'une fonction composée ? deux variables

[PDF] dérivée de fonction composée terminale s

[PDF] fonction polynome de degré 3 stmg

[PDF] fraction fonction dérivée

[PDF] tableau des dérivées u v

[PDF] tableau dérivée 1ere s

[PDF] dérivé de f au carré

[PDF] dérivée e^u

[PDF] dérivé de u^n

[PDF] u'u primitive

[PDF] dérivé de ln x

[PDF] dérivée de 1/x^2

[PDF] dérivée de x/2

[PDF] dérivée de racine de x