[PDF] [PDF] Chapitre 3 Dérivabilité des fonctions réelles





Previous PDF Next PDF



Tableau des dérivées élémentaires et règles de dérivation

Dérivée du produit par un scalaire. (ku) = ku. Dérivée du produit (u v. ) = u v ? uv v2. Dérivée de la puissance. (un) = nu un?1. Dérivée de la racine.



Fiche : Dérivées et primitives des fonctions usuelles - Formulaire

Dans chaque ligne f? est la dérivée de la fonction f sur l'intervalle I. xno`u n ? N





Tableaux des dérivées Dérivées des fonctions usuelles Notes

C'est la formule à retenir pour déterminer les primitives d'une fonction puissance. "La différence entre le mot juste et un mot presque juste est la même qu' 





FONCTION DERIVÉE

I. Dérivées des fonctions usuelles. Exemple : Soit la fonction f définie sur R par f (x) = x2 . Calculons le nombre dérivé de la fonction f en un nombre 



LA DÉRIVÉE

Une autre règle devra être étudiée pour les fonctions exponentielles (du type ). • La fonction identité n'est qu'un cas particulier des fonctions de forme (avec 



Chapitre 3 Dérivabilité des fonctions réelles

Conséquences de ce théor`eme : – une fonction polynôme est dérivable sur R et sa dérivée est un polynôme. – une fonction rationnelle (quotient de deux 



LA DÉRIVÉE SECONDE

Une fonction est dite concave sur un intervalle si pour toute paire de points sur le graphe de



Comprendre les dérivées partielles et leurs notations

Commençons par un exemple Soit f la fonction f : ? Ñ E px yq ÞÑ sinpxy. 2 q. Pour calculer la dérivée partielle de f suivant la première variable x





[PDF] Tableau de dérivées - Parfenoff org

II) Dérivées et opérations Si et sont deux fonctions dérivables sur l'ensemble D (D étant un intervalle ou une réunion d'intervalles) et ? est un 



[PDF] FONCTION DERIVÉE - maths et tiques

I Dérivées des fonctions usuelles Exemple : Soit la fonction f définie sur R par f (x) = x2 Calculons le nombre dérivé de la fonction f en un nombre 



[PDF] Tableau des dérivées élémentaires et règles de dérivation

1 Dérivation des fonctions élémentaires Fonction Df Dérivée (u + v) = u + v Dérivée du produit par un scalaire (ku) = ku Dérivée du produit



[PDF] Résumé de cours et méthodes 1 Nombre dérivé - Fonction dérivée

1 Nombre dérivé - Fonction dérivée : DÉFINITION • Etant donné f est une fonction définie sur un intervalle I contenant le réel a f est dérivable en a si 



[PDF] LA DÉRIVÉE

Graphiquement la dérivée d'une fonction correspond à la pente de sa droite tangente en un point spécifique L'illustration qui suit permet de visualiser la 



[PDF] Tableaux des dérivées

Dérivées des fonctions usuelles Notes Fonction f Fonction dérivée f ' "La différence entre le mot juste et un mot presque juste est la même qu'entre 



[PDF] Dérivation

Exo 1 Calculer la dérivée de la fonction x ?? x sinx Page 4 La notation de Leibniz On peut aussi dériver un nombre (comme x2 



[PDF] Chapitre 3 Dérivabilité des fonctions réelles

Dans tout ce chapitre I désigne un intervalle non vide de R une fonction polynôme est dérivable sur R et sa dérivée est un polynôme



[PDF] Dérivation des fonctions

Dérivabilité sur un intervalle Opérations Dérivation d'une réciproque Extremum d'une fonction Théorème de Rolle Théorème des accroissements finis

  • Quelle est la dérivée de U puissance n ?

    (un)' = nu'un-1
    si f = un et n est un entier naturel, la fonction f est dérivable sur les intervalles ou u est dérivable. si f = un et n est un entier relatif négatif, la fonction f est dérivable sur les intervalles ou u est dérivable et non nulle.
  • Quelle est la dérivée de ln ?

    La dérivée f' de la fonction f(x)=ln x est : f'(x) = 1/x pour tout x strictement positif.
  • Comment dériver U et V ?

    Rappels : la dérivée d'un produit de deux fonctions u(x)×v(x) u ( x ) × v ( x ) est u?(x)v(x)+u(x)v?(x) u ? ( x ) v ( x ) + u ( x ) v ? ( x ) et la dérivée d'une inverse de v(x) est ?v?(x)v(x)2 ? v ? ( x ) v ( x ) 2 dans la mesure où v(x) n'est pas nul.
[PDF] Chapitre 3 Dérivabilité des fonctions réelles Chapitre 3D´erivabilit´e des fonctions r´eelles La notion de d´eriv´ee est une notion fondamentale en analyse.Elle permet d"´etudier les variations d"une fonction, de construire des tangentes `a une courbe et de r´esoudre des probl`emes d"optimisation. En physique, lorsqu"une grandeur est fonction du temps, la d´eriv´ee de cette grandeur donne la vitesse instantan´ee de variation de cette grandeur, et la d´eriv´ee seconde donne l"acc´el´eration.

3.1 Fonctions d´erivables

Dans tout ce chapitre,d´esigne un intervalle non vide deR. D´efinition 3.1.1.Soit:Rune fonction, et soit0. On dit queest d´erivable en0si la limite lim

0(0+)(0)

existe, et est finie. Cette limite s"appelle la d´eriv´ee deen0, on la note(0). Bien sˆur, il revient au mˆeme de regarder la limite lim

0()(0)

0

Rappelons l"interpr´etation g´eom´etrique de la d´eriv´ee : siest d´erivable en0, alors

la courbe repr´esentative de la fonctionadmet une tangente au point (0(0)), de coefficient directeur(0).

En fait, la fonction(0+)(0)

dont on consid`ere ici la limite en 0, n"est pas

d´efinie en ce point. Dans ce cas, l"existence de la limite ´equivaut `a l"´egalit´e des limites `a

gauche et `a droite. C"est pourquoi on introduit les d´eriv´ees `a gauche et `a droite. D´efinition 3.1.2.Soit:Rune fonction, et soit0. 27
(1) On dit queest d´erivable `a gauche en0si la limite lim

00(0+)(0)

existe, et est finie. Cette limite s"appelle la d´eriv´ee de`a gauche en0, on la note (0). (2) On d´efinit de mˆeme la d´eriv´ee `a droite, que l"on note(0).

Proposition 3.1.3.Soit: []Rune fonction.

(1)Soit0][. Alorsest d´erivable en0si et seulement siest d´erivable `a droite et `a gauche en0et(0) =(0). (2)est d´erivable ensi et seulement siest d´erivable `a droite en. (3)est d´erivable ensi et seulement siest d´erivable `a gauche en. Les notions de d´eriv´ee `a droite et `a gauche ne sont pas tr`es importantes. Elles per- mettent cependant de v´erifier qu"une fonction est (ou n"est pas)d´erivable en un point. Proposition 3.1.4.Siest d´erivable en0, alorsest continue en0. D´emonstration.Supposonsd´erivable en0, alors la limite lim

0=0()(0)

0 existe, et est finie. En multipliant par la fonction (0), qui tend vers 0, on en d´eduit que lim

0=0()(0) = 0

c"est-`a-dire lim

0=0() =(0)

ce qui montre queest continue en0. La r´eciproque est fausse. Par exemple, la fonction: est continue en 0, mais n"est pas d´erivable en ce point. En effet,(0) =1 et(0) = 1. Proposition 3.1.5.Soit:Rune fonction, et soit0. Alorsest d´erivable en

0, de d´eriv´ee(0), si et seulement si il existe une fonctiontelle quelim0() = 0,

satisfaisant (0+) =(0) +(0) +() pour touttel que0+. 28
D´emonstration.. Supposonsd´erivable en0. Alors il suffit de d´efinir () =(0+)(0) (0) pour= 0, et(0) = 0.. Supposons qu"il existe une fonctiontelle que lim0() = 0, satisfaisant (0+) =(0) ++() pour un certain r´eel. On peut ´ecrire : (0+)(0) Quandtend vers 0, le membre de droite tend vers. Doncest d´erivable en0et (0) =. Cons´equences imm´ediates de cette proposition : - siest d´erivable en0, et siest un r´eel, alorsest d´erivable en0, de d´eriv´ee (0). - une fonction constante est partout d´erivable, de d´eriv´eenulle. - une fonction affine:+est partout d´erivable, et(0) =pour tout0.

Voici deux exemples bien connus.

Exemples.a) Soit1 un entier, nous allons d´eriver la fonction:. Soit0 un r´eel fix´e, alors d"apr`es la formule du binˆome de Newton nous avons, pour tout, (0+) = (0+)=? =0? 0 =0+(10) +2? =2? 20? et le dernier terme est une fonction de la forme(). Ainsi,est d´erivable en0, et (0) =10. b) Soit la fonction:1 , et soit0= 0. Alors, pour toutnous avons (0+)(0) =1

0+10=0(0+)

d"o`u lim

0(0+)(0)

=120

Doncest d´erivable en0, et(0) =1

20. 29
C"est Blaise Pascal qui, au d´ebut du 17esi`ecle, a le premier men´e des ´etudes sur la notion de tangente `a une courbe.

D`es la seconde moiti´e du 17

esi`ecle, le domaine math´ematique de l"analyse num´erique connaˆıt une avanc´ee prodigieuse grˆace aux travaux de Newtonet de Leibniz en mati`ere de calcul diff´erentiel et int´egral. Le marquis de l"Hˆopital participe aussi, `a la fin du 17 esi`ecle, `a ´etoffer cette nouvelle th´eorie, notamment en utilisant la d´eriv´ee pour calculerune limite dans le cas de formes

ind´etermin´ees particuli`eres (c"est la r`egle de L"Hˆopital, ´enonc´ee `a la fin du chapitre).

Finalement, d"Alembert introduit la d´efinition rigoureuse dunombre d´eriv´e en tant que limite du taux d"accroissement - sous une forme semblable `a celle qui est enseign´ee de nos jours. Cependant, `a l"´epoque de d"Alembert, c"est la notion de limite qui pose probl`eme. C"est seulement avec les travaux de Weierstrass au milieu du 19esi`ecle que le concept de d´eriv´ee sera enti`erement formalis´e.

C"est Lagrange (fin du 18

esi`ecle) qui a introduit la notation(0) pour d´esigner la d´eriv´ee deen0. Leibniz notait (0) et Newton (0). Ces trois notations sont encore usit´ees de nos jours.

3.2 Op´erations sur les d´eriv´ees

Commen¸cons par les op´erations alg´ebriques sur les d´eriv´ees. Th´eor`eme 3.2.1.Soient:Rdeux fonctions, et soit0. On suppose que etsont d´erivables en0. Alors (1)+est d´erivable en0, et (+)(0) =(0) +(0) (2)est d´erivable en0, et ()(0) =(0)(0) +(0)(0) (3)si(0)= 0, alors est d´erivable en0, et (0) =(0)(0)(0)(0)(0)2

D´emonstration.(1) Il suffit d"´ecrire

(() +())((0) +(0))

0=()(0)0+()(0)0

30
et de passer `a la limite quand0. (2) Il suffit d"´ecrire ()()(0)(0)

0=()(0)0() +(0)()(0)0

et de passer `a la limite quand0, en se servant de la continuit´e deen0. (3) Nous avons 1 ()1(0)

0=1()(0)()(0)0

Par passage `a la limite, on en d´eduit que la fonction 1 est d´erivable en0, de d´eriv´ee ?1 (0) =(0)(0)2

On applique alors le point (1) qui donne

(0) =(0)1(0)+(0)? (0)(0)2? d"o`u le r´esultat.

Cons´equences de ce th´eor`eme :

- une fonction polynˆome est d´erivable surR, et sa d´eriv´ee est un polynˆome. - une fonction rationnelle (quotient de deux polynˆomes) est d´erivable sur son ensemble de d´efinition, et sa d´eriv´ee est une fonction rationnelle. En effet, nous avons vu que les fonctions de la formesont d´erivables sur toutR. On en d´eduit que les monˆomessont d´erivables, puis que les sommes de

monˆomes, c"est-`a-dire les polynˆomes, sont d´erivables surR. Le r´esultat pour les fonctions

rationnelles en d´ecoule, par d´erivation d"un quotient. Apr`es les op´erations alg´ebriques, passons `a la composition des fonctions. Th´eor`eme 3.2.2(D´erivation des fonctions compos´ees).Soient:Ret:R deux fonctions telles que(), et soit0. Siest d´erivable en0, et siest d´erivable en(0), alorsest d´erivable en0et ()(0) =((0))(0) D´emonstration.Il existe des fonctions1et2telles que lim

01() = 0 = lim02()

satisfaisant, pour tout, (0+) =(0) +(0) +1() 31
et, pour tout, ((0) +) =((0)) +((0)) +2()

Prenons en particulier

=((0) +1())

Alors nous avons

((0+)) =((0) +) =((0)) +((0)) +2() =((0)) +((0) +1())((0)) +((0) +1())2(((0) +1())) =((0)) +(0)((0)) +3() o`u l"on a pos´e

3() =1()((0)) + ((0) +1())2(((0) +1()))

Il est clair que lim

03() = 0, d"o`u le r´esultat.

On voudrait `a pr´esent calculer les d´eriv´ees des fonctions usuelles. Montrer que les

fonctions trigonom´etriques sin et cos sont d´erivables (et calculer leurs d´eriv´ees) n"est pas

´evident, et d´epend des d´efinitions que l"on donne pour ces fonctions. Pour log et exp, c"est plus facile... si on d´efinit log comme l"unique primitive de1 sur ]0+[ qui s"annule en 1. Mais encore faut-il montrer qu"une telle primitive existe : ce sera un r´esultat important du chapitre consacr´e `a l"int´egration. La fonction exp est ensuite d´efinie comme la r´eciproque de la fonction log, et pour la d´eriver on se sert du r´esultat suivant. Th´eor`eme 3.2.3(D´erivation des fonctions r´eciproques).Soit:Rune fonction continue strictement monotone. Alors : (1)L"ensemble:=()est un intervalle, dont les bornes sont les limites deaux bornes de. La fonctionr´ealise une bijection entreet. (2)La bijection r´eciproque1:est continue strictement monotone, de mˆeme sens de variations que. (3)Siest d´erivable en un point0, et si(0)= 0, alors1est d´erivable au point0=(0)et (1)(0) =1 (0)=1(1(0)) D´emonstration.(1) et (2) : c"est le th´eor`eme de la bijection (voir le chapitre 2). (3). Supposonsd´erivable en0. Soit0=(0) et soit, on s"int´eresse `a la quantit´e

1()1(0)

0 32

Posons=1(), alors cette quantit´e s"´ecrit

0 ()(0)

Comme1est continue en0, nous avons :

lim

01() =1(0) =0

Par composition des limites, on en d´eduit que

lim 0

1()1(0)

0= lim00()(0)=1(0)

d"o`u le r´esultat. Exemple.Supposons que la fonction1sur ]0+[ admette une primitive, not´ee log, qui s"annule en 1. Soit exp :R]0+[ l"application r´eciproque de log. Alors exp est d´erivable en tout point0R, et satisfait exp (0) =1 log(exp(0))=11 exp(0)= exp(0)

3.3 D´eriv´ee et extr´ema locaux

Soit:Ret soit0. On dit queadmet unmaximum localen0s"il existe un voisinagede0tel que l"on ait ()(0) On dit queadmet unminimum localen0siadmet un maximum local en0. Enfin, on dit queadmet unextremum localsiadmet un maximum local ou un minimum local. Proposition 3.3.1.Soit:Rd´erivable, et soit0un point int´erieur `a. Si admet un extremum local en0, alors(0) = 0. D´emonstration.Quitte `a remplacerpar, on peut supposer queadmet un maximum local en0. Il existe donc un voisinagede0tel que l"on ait ()(0)0 Comme0est un point int´erieur `a, on peut choisirinclus dans, c"est-`a-dire que est d´efinie surtout entier. Commeest d´erivable en0, qui est int´erieur `a, les 33
d´eriv´ees `a droite et `a gauche deen0existent, et sont ´egales. De plus, nous avons, pour tout,

0=()(0)

00 d"o`u, par passage `a la limite : (0) = lim00()(0) 00 Un raisonnement analogue montre que(0)0. Comme(0) =(0) =(0) on en d´eduit que(0) = 0. Autrement dit, les extr´ema d"une fonction `a l"int´erieur d"un intervalle sont `a chercher parmi les points o`u la d´eriv´ee s"annule. Attention, la r´eciproque est fausse : il se peut que la d´eriv´ees"annule en un point qui n"est pas un extremum. Par exemple, la fonction:3a sa d´eriv´ee qui s"annule en

0, mais n"admet pas d"extremum en ce point.

De mˆeme, la proposition devient fausse si0est au bord de l"intervalle. Par exemple, la fonction+ 1, [01][01] admet un minimum en 0 et un maximum en 1, et pourtant sa d´eriv´ee ne s"annule jamais.

3.4 Rolle, accroissements finis

3.4.1 Th´eor`eme de Rolle

Premi`ere observation : si on trace une courbe d´erivable entre deux points du plan,

avec mˆeme ordonn´ee au d´epart et `a l"arriv´ee, alors il y atoujours un point o`u la tangente

est horizontale. 34
Th´eor`eme 3.4.1(Rolle).Soit: []Rune fonction continue sur[], d´erivable sur][, telle que() =(). Alors il existe][tel que() = 0. D´emonstration.D"apr`es le th´eor`eme des bornes,admet un minimum et un maximum globaux sur [], not´esetrespectivement. Si=, alorsest constante sur [], doncest nulle sur tout ][ et c"est fini. Si=, alors, sachant que() =(), l"un au moins de ces deux extr´ema est atteint en un pointappartenant `a l"intervalle ouvert ][. Mais alors,est un extremum local int´erieur `a [], donc() = 0 d"apr`es ce qu"on a vu pr´ec´edemment. C"est en 1691 que Michel Rolle d´emontre ce th´eor`eme, pour les fonctions polynomiales uniquement. Il s"agit donc `a l"origine d"un r´esultat d"alg`ebre. Il faut attendre 1860 pour que Pierre-Ossian Bonnet ´enonce le th´eor`eme de Rolle dans saversion moderne. Celui-ci devient alors un point central de l"analyse r´eelle. Nous donnons ci-dessous la version"historique». Corollaire 3.4.2.Soitun polynˆome r´eel ayant au moinsracines r´eelles distinctes, avec2. Alors son polynˆome d´eriv´ea au moins1racines r´eelles distinctes. D´emonstration.Soient1 2 les racines derang´ees par ordre croissant. On applique le th. de Rolle `a la fonctionsur chacun des intervalles [12][1], ce qui donne1 points distincts en lesquelsest nul.

3.4.2 Th´eor`eme des accroissements finis

quotesdbs_dbs33.pdfusesText_39
[PDF] u'u primitive

[PDF] dérivé de ln x

[PDF] dérivée de 1/x^2

[PDF] dérivée de x/2

[PDF] dérivée de racine de x

[PDF] dérivée de x/3

[PDF] dérivée 1/x^n

[PDF] ln e 1

[PDF] ln ex

[PDF] ln(e^2)

[PDF] limite racine nième exercice corrigé

[PDF] dérivée nième de racine carrée

[PDF] dérivée de 0

[PDF] dérivée d'une fonction égale ? 0

[PDF] comment calculer une primitive