[PDF] [PDF] Dérivées des fonctions de plusieurs variables (suite) 1 La





Previous PDF Next PDF



Fonctions de deux variables

Comme les fonctions d'une variable celles de deux variables s'écrivent avec ”??”. Pour une fonction de deux variables



Fonctions à deux variables

Jan 25 2012 Les dérivées partielles d'une fonction à deux variables sont les dérivées de ses application partielles. On note. ?f. ?x la dérivée de fx et.



Dérivées des fonctions de plusieurs variables (suite) 1 La

Dérivées des fonctions de plusieurs variables (suite). 1 La différentielle d'une fonction à valeurs réelles. Cas des fonctions d'une variable.



5. Dérivées de fonctions de plusieurs variables

Fonction de deux variables. ? Soit f une fonction de deux variables définie de R2 dans R. ? Les dérivée partielles de f au point (x y) = x ? R2 sont.



Fonctions de plusieurs variables

Nov 1 2004 Théor`eme 1 Soit f une fonction de deux variables définie au voisinage de (0



Fonctions de 2 ou 3 variables

Dérivées partielles premières des fonctions à deux variables. Soit f : R×R ?. R. (xy) ? f (x



2.3 Dérivabilité en plusieurs variables

Exactement comme dans le cas des fonction d'une variable en plu- sieurs variables la composition de fonctions dérivables est dérivable. La dérivée composée se 



Fonctions à deux variables

Jul 5 2013 savoir calculer des dérivées partielles et déterminer des points critiques. • comprendre l'intérêt des intégrales doubles et de la formule de ...



Intégrales de fonctions de plusieurs variables

Calculer la dérivée d'une fonction est toujours possible et relativement facile : il suffit d'appli- quer un certain nombre de r`egles de calcul bien connues; 



Notes du cours MTH1101 – Calcul I Partie II: fonctions de plusieurs

Dérivées partielles. 2 Approximations des fonctions de plusieurs variables. Plan tangent et approximation linéaire. Dérivation des fonctions composées.



[PDF] Fonctions de deux variables

Dérivées partielles Pour une fonction de deux variables il y a deux dérivées une ”par rapport `a x” et l'autre ”par rapport `a y” Les formules sont (`a 



[PDF] 5 Dérivées de fonctions de plusieurs variables - GERAD

Fonction de deux variables ? Soit f une fonction de deux variables définie de R2 dans R ? Les dérivée partielles de f au point (x y) = x ? R2 sont



[PDF] Fonctions à deux variables - Normale Sup

25 jan 2012 · Vous savez que pour une fonction f à une variable le nombre dérivé f/(x) représente le coefficient directeur de la tangente à la courbe



[PDF] Chapitre 8 Fonctions de deux variables - Unisciel

Ces fonctions partielles sont des fonctions de R vers R on peut donc les étudier comme telles (dérivée tableau de variation limites ) 2 Limites et 



[PDF] 23 Dérivabilité en plusieurs variables

La dérivée d'une fonction lorsqu'elle existe est liée aux variations de la fonction tandis que l'un de ses variables parcourt une direction Pour



[PDF] Fonctions de 2 et 3 variables

La fonction f admet une dérivée partielle par rapport à x sur {(x y) ? R × R: y > 0} = D(f) Page 18 3 2 Dérivées partielles deuxièmes des fonctions à deux 



[PDF] Dérivées des fonctions de plusieurs variables (suite) 1 La

Dérivées des fonctions de plusieurs variables (suite) 1 La différentielle d'une fonction à valeurs réelles Cas des fonctions d'une variable



[PDF] Dérivation de fonctions de plusieurs variables

Si on dérive une fonction de variables on aura à la fin du procédé de dérivation dérivées partielles Le procédé est le suivant : 1) On dérive d'abord 



[PDF] Chapitre 1 - Fonctions de plusieurs variables Limites dans R

Le but de ce chapitre est de généraliser la notion de dérivée pour une fonction f de plusieurs variables L'objectif est évidemment de donner une définition 



[PDF] Fonctions de plusieurs variables - Mathématiques

Pour calculer les dérivée partielles de g?f il suffit d'appliquer la formule de dérivation des fonctions d'une variable Exemple Prenons f(x y) = x2y3 soit 

:
[PDF] Dérivées des fonctions de plusieurs variables (suite) 1 La

L2 MIEE 2012-2013V ARUniv ersitéde Rennes 1

Dérivées des fonctions de plusieurs variables (suite)

1 La différentielle d"une fonction à valeurs réelles

Cas des fonctions d"une variable

(i)fest dérivable enX0silimh!0f(X0+h)f(X0)h existe.

Sa valeur`est notéef0(X0).

(ii) On p eut,de manière équiv alente,écrire limh!0f(X0+h)f(X0)`hh = 0. On remarque queh!L(h) =`hest une application linéaire deRdansR, que l"on appelledifférentielledefenX0et que l"on notedf(X0). (iii) Si fest dérivable enX0, alors pourhpetit :f(X0+h)est "voisin" def(X0)+f0(X0)h. Donch!f(X0) +f0(X0)hest une application affine qui "approche très bien " f(X0+h).

Définition

1.1. fest différentiable enxs"il existe une application linéaireL:Rn!R

telle que : f(x+h) =f(x) +L(h) +khk(h); aveclimh!0(h) = 0. L"applicationLestla différentielle defenxet se notedf(x) ouf0(x).

Remarque

Cette définition signifie que l"application affinef(x)+df(x)hest tangente à l"application h7!f(x+h)en 0. Lorsque qu"on remplacef(x+h)parf(x) +df(x)het quehest petit, alors on fait une erreur négligeable par rapport àh.

Cela revient à dire

lim khk!0f(x+h)f(x)L(h)khk= 0 La différentielle, lorsqu"elle existe, est unique.

Proposition

1.2. Sifest différentiable enx, alors ses dérivées partielles existent et on

a : df(x)h=@ f@ x

1(x)h1+:::+@ f@ x

n(x)hn =rfh

Remarque

La matrice de l"application linéairedf(x)dans la base canonique est le gradientrf(x). 1

L2 MIEE 2012-2013V ARUniv ersitéde Rennes 1

Proposition

1.3. Sifest différentiable enxalorsfest continue enx.

Remarque

L"existence des dérivées partielles defn"implique pas la différentiabilité.

Mais :

Théorème

1.4. Sifadmet des dérivées partielles et si elles sont continues alorsfest

différentiable.

On dit quefest de classeC1.

1.1 Règle de différentiation

Proposition

1.5. Sifetgsont différentiables on a :

(i)d(f+g)(x) =df(x) +dg(x) (ii)d(f)(x) =df(x) (iii)d(fg)(x) =f(x)dg(x) +g(x)df(x) (iv)dfg (x) =g(x)df(x)f(x)dg(x)g

2(x)(à condition queg(x)6= 0)

1.2 Remarques

Sif:U!RoùUest un ouvert deRn, alors :

(i) Si festC1surUalorsfest différentiable surUet les dérivées@ f@ x iexistent surU.

Les réciproques ne sont pas vraies!!

(ii) Si fest différentiable enx02Ualors l"application affineA(h) =f(x0) +df(x0)h a pour graphe l"espace tangent au graphe defenx0.

1.3 Dérivées partielles successives

Les dérivées partielles

@f@x i(x1;:::;xn)sont des fonctions dex1;:::;xn, et il arrive souvent qu"elles sont eux-même dérivables.

Définition

1.6. On écrit, lorsqu"elle existe,@2f@x

i@xj=@@x i @f@x j et on dit qu"il s"agit d"unedérivée partielle secondedef.

Exemple

f:R2!R;(x;y)7!x3y4. Alors@2f@x@y (x;y) = 12x2y3=@2f@y@x (x;y). 2

L2 MIEE 2012-2013V ARUniv ersitéde Rennes 1

Théorème

1.7. (Schwarz)

Si les déirvées partielles

@f@x i;@2f@x i@xjexistent et sont continues dans une boule autour de(a1:::an)alors : 2f@x i@xj(a) =@2f@x j@xi(a)

2 La différentielle d"une fonction à valeurs vectorielles

Définition

2.1. FdeRndansRmestdifférentiableenx2Rns"il existe uneappli-

cation linéaireLdeRndansRmtelle que : lim khk!0F(x+h)F(x)Lhkhk= 0:

Lest ladifférentielledeFenxet se note :dF(x).

Théorème

2.2. Fest différentiable enxsi et seulement si ses composants sont différen-

tiables et on a : dF(x)h= (rf1(x)h; ::: ;rfm(x)h):

Définition

2.3. La matrice

2 6 4@f 1@x

1(x)@f1@x

n(x) @f m@x

1(x)@fm@x

n(x)3 7 5 est la matrice dedF(x)et est appeléematrice jacobiennedeFenxet se note :J(F)(x).

Théorème

2.4. SiFa des composantes de classeC1alors elles sont différentiables etF

est également différentiable.

Exercice

(i) T rouverla matrice jaco biennede Fen(1;1)de :F(x; y) = (x2+y2; exy). (ii) T rouverla différen tiellede F(x; y ; z) = (x; y ; z). (iii) T rouverla diff érentiellede F(r; ) = (rcos; rsin).

2.1 Propriétés de la différentielle

Proposition

2.5. SiFdeRndansRmest linéaire, alorsdF(x) =F.

Proposition

2.6. SiFest différentiable enxalorsFest continue enx.

3

L2 MIEE 2012-2013V ARUniv ersitéde Rennes 1

2.2 Différentielles des fonctions composées

SiFest une fonction deRndansRm, siGest une fonction deRmdansRq, alorsGF est une fonction deRndansRq.

Théorème

2.7. SiFest différentiable enx, et siGest différentiable enF(x), alors

GFest différentiable enxet on a :

d(GF)(x) =dG(F(x))dF(x):

Exercice

DériverGFlorsque

F(x; y) = (x2+y2; exy)

G(u; v) = (xy ;sinx; x2y)

2.3 Sur la règle de dérivation en chaîne

Le résultat théorique

Soientf:Rn!Retg:Rp!Rndeux fonctions différentiables. Écrivonsh=f g:D"après la règle de dérivation des fonctions composées nous avons (comme pour les fonctions deRdansR) : h

0(x) = (fg)0(x) =f0(g(x)):g0(x):

La fonctionfgest une fonction deRpdansR. Sa dérivée est donc un vecteur ligne àp colonnes, la transposée de son gradient : h

0(x) =

@h@x 1@h@x

2:::@h@x

p La fonctiongest une fonction deRpdansRn. Sa dérivée est la matricenpcomposée des vecteurs transposés des gradients des coordonnées deg. Sig(x) = (g1(x);g2(x);:::;g2(x)) (on devrait écrire ce vecteur en colonne si on voulait se conformer en toute rigueur aux choix du cours) la dérivée degs"écrit : g

0(x) =0

B

BBB@@g

1@x 1@g 1@x

2@g1@x

p@g2@x 1@g 2@x

2@g2@x

p............ @g n@x 1@g n@x

2@gn@x

p1 C CCCA: Pour simplifier la présentation appelonsg= (g1;g2;:::;gn)un point deRn. C"est un abus de notation,gne désigne pas ici la fonctiongmais un vecteur, un point dansRn. La dérivée defen un pointgest donnée par la transposée de son gradient : f

0(g) =@f@g

1@f@g

2:::@f@g

n 4

L2 MIEE 2012-2013V ARUniv ersitéde Rennes 1

L"égalité matricielleh0(x) = (fg)0(x) =f0(g(x)):g0(x)signifie donc : @h@x 1@h@x

2:::@h@x

p =@f@g 1@f@g

2:::@f@g

n0 B

BBB@@g

1@x 1@g 1@x

2@g1@x

p@g2@x 1@g 2@x

2@g2@x

p............ @g n@x 1@g n@x

2@gn@x

p1 C CCCA:

Autrement dit pour touti= 1;:::;pon a

@h@x i=nX k=1@f@g k@g k@x i: Attention! Quandgkapparaît au dénominateur cela signifie seulement que l"on prend la

dérivée defpar rapport à sakième variable. Quand il apparaît au numérateurgkdésigne

lakième coordonnée deg: c"est alors une fonction.

Un exemple

Prenonsf:R3!Retg:R2!R3deux fonctions différentiables définies par f(x;y;z) = 2xy3(x+z); g(x;y) = (x+y4;y3x2;2x23y): On demande de calculer les dérivées partielles de la fonction de deux variablesh=fg.

Pour se ramener au théorème général et ne pas s"embrouiller, il est préférable de changer

les noms des variables dans l"expression def: f(g1;g2;g3) = 2g1g23(g1+g3): La formule de dérivation en chaîne donne alors @h@x =@f@g

1@(x+y4)@x

+@f@g

2@(y3x2)@x

+@f@g

3@(2x23y)@x

@h@y =@f@g

1@(x+y4)@y

+@f@g

2@(y3x2)@y

+@f@g

3@(2x23y)@y

Pour @h@x , on obtient : @h@x = (2g23):1 + 2g1:(6x) + (3):4x Exprimée en fonction dexetycette dérivée s"écrit : @h@x = 2y6x2312x(x+y4)12x=12xy418x2+ 2y12x3: Je vous laisse le calcul de la deuxième dérivée partielle dehen exercice. Remarque. On peut aussi écrire les choses sous la forme : @h@x =@f@x @(x+y4)@x +@f@y @(y3x2)@x +@f@z @(2x23y)@x

mais c"est un peu risqué. Il ne faut surtout pas oublier de prendre les valeurs des dérivées

partielles defau point(x+y4;y3x2;2x23y). 5quotesdbs_dbs33.pdfusesText_39
[PDF] formule de taylor fonction ? plusieurs variables

[PDF] dérivation en chaine plusieurs variables

[PDF] règle de la chaine dérivée partielle

[PDF] développement limité a l'ordre 2 d'une fonction ? 2 variables

[PDF] fonction exponentielle négative

[PDF] cours exponentielle terminale es pdf

[PDF] fonction exponentielle terminale es bac

[PDF] loi exponentielle négative

[PDF] fonction logarithme népérien terminale es

[PDF] fonction rationnelle ensemble de définition

[PDF] fonction rationnelle domaine de définition

[PDF] dérivée de ln lnx

[PDF] primitive de x

[PDF] primitive de x^2

[PDF] dérivées successives exercices corrigés