[PDF] [PDF] 1 Fonctions de plusieurs variables





Previous PDF Next PDF



Fonctions de plusieurs variables

01.11.2004 1.2 Différentiabilité d'une fonction de deux variables ... On peut aussi parler de développement limité `a l'ordre 2 pour une fonction de ...



Développements limités dune fonction `a deux variables

Ici on va traiter seulement le cas de l'ordre 1 et le cas de l'ordre 2 au voisinage du point (a



Fonctions de plusieurs variables

passant par le point M0 = (12) et orthogonal au vecteur v = (3



1 Fonctions de plusieurs variables

surface définie comme le graphe d'une fonction de deux variables (x y) qui ne dépend développement limité `a l'ordre 2 donera la sph`ere osculatrice.



Chapitre 13 : - FONCTIONS DE PLUSIEURS VARIABLES : CALCUL

CALCUL DIFFÉRENTIEL. 1 Objets du calcul di érentiel du premier ordre. 2 D 1.10 On dit que f admet un développement limité du premier ordre au point A ...



1.3 Quelques techniques de calcul des DL

voisinage de x0 ? R. Si f admet un développement limité d'ordre m en x0 donné 1.5 DL d'ordre 2 pour une fonction de deux variables. Définition 1.33.



Feuille dexercices 10 Développements limités-Calculs de limites

) pour ? 0 et (0) = 0. 1. Montrer que admet un développement limité à l'ordre 2 en 0. 2. La fonction est-elle deux 



www.rblld.fr

2 – Fonctions de plusieurs variables : calcul di érentiel D 1.10 On dit que f admet un développement limité du premier ordre au point A s'il existe des.



Fonctions de plusieurs variables et applications pour lingénieur

1.1 Fonctions de deux variables à valeurs réelles . On peut former les développements limités à l'ordre 2 des fonctions usuelles que l'on.



Calcul Différentiel III

Développement limité à l'ordre 2 . . . . . . . . . . . . . . . . . . 11 Q ? L2(Rn × Rm R)



[PDF] Fonctions de plusieurs variables

1 nov 2004 · On peut aussi parler de développement limité `a l'ordre 2 pour une fonction de plusieurs vari- ables C'est lié aux dérivées partielles secondes 



[PDF] 13 Quelques techniques de calcul des DL

Soient f et g deux fonctions réelles admettant chacune un développement limité d'ordre n en x0 Alors pour tout ? ? ? R la fonction (?f + ?g) admet un déve-



[PDF] Développements limités dune fonction `a deux variables

Développements limités d'une fonction `a deux variables Ici on va traiter seulement le cas de l'ordre 1 et le cas de l'ordre 2 au voisinage du point (a 



[PDF] 1 Fonctions de plusieurs variables

La fonction composée f ? g admet alors un développement limité `a l'ordre 2 en z = g(x0y0) avec pour partie principale les termes de degré au plus 2 du 



[PDF] FONCTIONS DE PLUSIEURS VARIABLES : CALCUL DIFFÉRENTIEL

Exemple 3 15 Développement limité à l'ordre 2 en A = (01) de la fonction de l'exemple 3 2



[PDF] Chapitre 1 - Fonctions de plusieurs variables Limites dans R

Exercice 2 Après avoir vérifiées qu'elles étaient de classe C3 calculer les développements limités à l'ordre 3 en 0 des fonctions définies par



[PDF] Fonctions de plusieurs variables - Mathématiques

passant par le point M0 = (12) et orthogonal au vecteur v = (34) est Un développement limité `a l'ordre 1 de la fonction f au point x0 est une 



[PDF] Chapitre 8 Fonctions de deux variables - Unisciel

3 2 Développement limité d'ordre 1 Théorème 2 : Soit f une fonction de classe C1 sur un ouvert U de R 2 et M0 = (x0y0) un point de U



[PDF] Fonctions de plusieurs variables

10 avr 2009 · Développement limité à l'ordre 2 et extrema locaux terrestre est une fonction de deux variables (la lattitude et la longitude qui 



[PDF] Fonctions de plusieurs variables et applications pour lingénieur

1 1 3 Représentation graphique d'une fonction à deux variables On peut former les développements limités à l'ordre 2 des fonctions usuelles que l'on

:
[PDF] 1 Fonctions de plusieurs variables

Universit´e de Paris X Nanterre

U.F.R. Segmi Ann´ee 2006-2007

Licence Economie-Gestion premi`ere ann´eeCours de Math´ematiques II. Chapitre 2

1 Fonctions de plusieurs variables

Ce chapitre est conscr´e aux fonctions de plusieurs variables, c"est-`a-dire d´efinies sur une partie deRn, qu"on appellera son domaine de d´efinition. On se limitera essentiellement

aux fonctions de 2 ou 3 variables.Exemple1.Soitf1d´efinie surR2parf1(x,y) = (x+y)/(x-y). Son domaine de d´efinition

estR2\Δ, o`u Δ est la premi`ere bisectrice : Δ ={(x,y)?R2|x=y}.?? x < y

x > yFig.1 - Le domaine de d´efinition def1Exemple2.Soitf2d´efinie surR2parf2(x,y) =xy/?1-x2-y2. Son domaine de

d´efinition est le disque unit´e ouvertD={(x,y)?R2|x2+y2<1}.??

DFig.2 - Le domaine de d´efinition def2D´efinition 3(Graphe et isoclines).SoitDun domaine deR2etf:D→Rune fonction

d´efinie surD`a valeurs r´eelles. Le graphe defest la surface{(x,y,z)?R3|z=f(x,y)}. Pourc?R, on appelle courbe (ou ligne ou isocline) de niveaucla courbeIcd´efinie

implicitement par la relationf(x,y) =c, i.e.Ic={(x,y)?R2|f(x,y) =c}.Exemple4.Soitfla fonction d´efinie surR2parf(x,y) =x2+y2. Son graphe est un

parabolo¨ıde de r´evolution et ses isoclines sont les cerclesx2+y2=cpourc >0. Une telle surface d´efinie comme le graphe d"une fonction de deux variables (x,y) qui ne d´epend que dex2+y2est appel´ee surface de r´evolution.1

Fig.3 - Une surface et ses isoclinesExemple5.Soitfd´efinie parf(x,y) = (x+y)/(x-y). Les isoclines sont les courbes

d"´equationx+y=c(x-y), soit les droites passant par l"originey={(c-1)/(c+ 1)}x.

2 Limite et continuit´e

En dimension 1, on a vu que la notion de continuit´e est associ´ee `a celle de limite. Une fonction est continue enx0sif(x) s"approche def(x0) lorsquexs"approche dex0, c"est-`a-dire lorsque|x-x0devient petit. En dimension sup´erieure, pour d´efinir les notions

de limite et de continuit´e, il est tout d"abord n´ecessaire de d´efinir une notion de proximit´e,

et c"est-`a-dire de d´efinir la distance entre deux points deRn. Il y a de nombreux choix possibles, mais ils conduisent tous aux mˆemes notions de limite et de continuit´e. Nous en

consid`ererons un seul, pour sa simplicit´e.D´efinition 6(Distance).Soientu,v?Rn. La distance deu`av, not´eed(u,v)est d´efinie

pard(u,v) =?n i=1|ui-vi|.

En particulier, pourd= 2, la distance d"un point (x,y) `a (0,0) est ´egale `a|x|+|y|.D´efinition 7(Limite).On dit que la fonctionfd´efinie sur un domaineDdeRnadmet

lim u→u0f(u) =? . Interpr´etationLe fait quefadmette la limite?enu0signifie d"une part que siuest proche deu0, alorsf(u) est proche de?, et surtout que l"on peut obtenir une approximation arbitrairede?par une ´evaluation defen un pointu, `a condition queusoit assez proche deu0.2 Remarque8.Lorsque l"on dit queus"approche deu0au sens de la distancedd´efinie ci-dessus, le chemin par lequelus"approche deu0n"est pas pris en compte. Donc lorsque fadmet une limite?enu0,f(u) s"approche de?quelle que soit la fa¸con dontus"approche deu0. Par exemple, en dimension 2, un point (x,y) peut s"approcher de 0 d"une infinit´e

de fa¸con, par exmple :-le long de l"axe horizontal, c"est-`a-dire quey= 0 etxtend vers 0,-le long de l"axe vertical, i.e.x= 0 etytend vers 0,-le long de la diagonale, i.e.x=yet tend vers 0,-le long d"une courbe quelconque, par exemple la paraboley=x2.

Si lim

u→u0f(u) =?, alors quel que soit le chemin queuprend pour aller `au0,f(u) va `a?. On peut utiliser cette remarque pour montrer a contrario qu"une fonction n"admet pas de limite en un point donn´e.Exemple9.Soitfla fonction d´efinie surR2\ {(0,0)}par f(x,y) =xyx 2+y2. Alorsfn"admet pas de limite en (0,0). En effet, le long d"un axe, par exemple le long de l"axe horizontal, on af(x,0) = 0 pour toutx?= 0, et donc limx→0f(x,0) = 0 (la limite est ici consid´er´ee pour une fonction de la seule variablex). De mˆeme,f(0,y) = 0 pour tout y?= 0, et donc limy→0f(0,y) = 0. Le long de la diagonalex=y, on af(x,x) = 1/2 pour toutx?= 0, et donc limx→0f(x,x) = 1/2. La fonctionfn"admet donc pas de limite en 0

au sens de la d´efinition 7.D´efinition 10(Continuit´e).Une fonctionfd´efinie sur un domaineDdeRnest continue

en un pointu0silimu→u0f(u) =f(u0). Elle est continue surDsi elle est continue en tout point deD. Les fonctions usuelles sont continues sur leur ensemble de d´efinition. Notamment, les polynˆomes, les fractions rationnelles aux points o`u le d´enominateur en s"annule pas. Les r`egles de la continuit´e des fonctions d"une seule variable s"appliquent : la somme, le pro- duit de fonctions continues sont des fonctions continues. La compos´ee de deux fonctions continues est continue.

3 Fonctions et d´eriv´ees partielles

Soitf:D→Rune fonction d´efine sur un domaineDdeRn. On appellei-`eme fonction partielle au pointa= (a1,...,an)?Dla fonctionfi, d´efinie sur le domaine D i={x?R|(a1,...,ai-1,x,ai+1,...,an)?D}, par ?x?Di, fi(x) =f(a1,...,ai-1,x,ai+1,...,an).3 Exemple11.Soitfd´efinie surR3parf(x,y,z) =xy2z3. Soita= (1,-1,2). Les fonctions partielles defenasont d´efinies surRpar f

1(x) =f(x,-1,2) = 8x , f2(y) =f(1,y,2) = 8y , f3(z) =f(1,-1,z) =z .Exemple12.Soitfd´efinie sur le disqueDde centre 0 et de rayon 2 par

f(x,y) =?4-x2-y2. Soita= (1/2,1). Les deux fonctions partielles defenasont f

1: [-⎷3,⎷3]→R, x?→?3-x2;

f

2: [-⎷15/2,⎷15/2]→R, y?→?15/4-y2D´efinition 13(D´eriv´ees partielles).Soitf:D→Rune fonction d´efinie sur un domaine

DdeRn. Soita?D. Si lai-`eme fonction partielle defenaest d´erivable enai, alors

sa d´eriv´ee (par rapport `a la variablexi) est appel´eei-`eme d´eriv´ee partielle defena, et

not´ee ∂f∂x i(a).Exemple14.Soitfd´efinie surR2parf(x,y) =x3y4. Alorsfadmet deux d´eriv´ees par- tielles en tout point (a,b) deR2: ∂f∂x (a,b) = 3a2b4, ∂f∂y

(a,b) = 4a3b3.Exemple15.Soitfd´efinie surR2parf(x,y) = (x+y)/x-y). Alorsfadmet deux d´eriv´ees

partielles en tout point (a,b) deR2tels quea?=b: ∂f∂x (a,b) =-2b/(a-b)2, ∂f∂y

(a,b) = 2b/(a-b)2.D´efinition 16(D´eriv´ees partielles d"ordre sup´erieur).Soitfune fonction d´efinie sur un

domaineDdeRn. Si ses d´eriv´ees partielles d"ordre 1 sont encore d´erivable par rapport

`a chaque variable, leurs d´eriv´ees partielles sont appel´ees d´eriv´ees partielles secondes. Par

r´ecurrence, on d´efinit les d´eriv´ees partielles d"ordrencomme les d´eriv´ees partielles des

d´eriv´ees d"ordren-1.Remarque17.Une d´eriv´ee partielle d"ordrenest donc obtenue en d´erivant partiellement

successivement par rapport `a une des variables,nfois. Par exemple, on obtient une d´eriv´ee d"ordre 4 d"une fonction de trois variablesx,y,zen d´erivant d"abord enx, puis eny, puis `a nouveau enx, puis enz; ou bien en d´erivant enypuis enz, puis deux fois enx.4 NotationLa d´eriv´ee partielle d"ordrepd"une fonction denvariablesx1,...,xnobtenue en d´erivantp1fois par rapport `ax1,p2fois par rapport `ax2...pnfois par rapport `axn, o`up1,...,pnsont des entiers positifs ou nuls tels quep1+···+pn=pest not´ee nf∂x

p11...∂xpnnExemple18.Reprenons l"exemple 11 et calculons quelques d´eriv´ees partielles successives

def(x,y,z) =xy2z3. ∂f∂x (x,y,z) =y2z3,

2f∂x

2(x,y,z) = 0 ;∂f2∂x∂y

(x,y,z) = 2yz3,

3f∂x∂y

2(x,y,z) = 2z3,∂3f∂x∂y∂z

(x,y,z) = 6yz2,

4f∂x∂y

3(x,y,z) = 0.

Il est naturel de se demander si dans les d´eriv´ees partielles d"ordre au moins 2, l"ordre

des d´erivations importe. Pour les fonctions usuelles dont toutes les d´eriv´ees existent et

sont continues sur leur domaine de d´efinition, l"ordre n"importe pas. Plus pr´ecis´ement, on

a le r´esultat suivant.Proposition 19(Lemme de Schwarz).Soitfune fonction d´efinie sur un domaineD

deRn. Soienti?=jdeux entiers compris entre 1 etn. Si les d´eriv´ees partielles secondes

2f/∂xi∂xjet∂2f/∂xj∂xiexistent et sont continues, alors elles sont ´egales.

Ce r´esultat sera admis et on admettra aussi qu"il existe des exemples de fonctions pour

lesquels les deux d´eriv´ees existent en un point mais ne sont pas ´egales. On ne donnera pas

de tels exemples car ils ne seront pas rencontr´es en pratique.Exemple20.Soitf:R2+→Rd´efinie parf(x,y) =?x

3y. Alors, pourx,y >0, on a

∂f∂x (x,y) =32 ⎷xy , ∂f∂y (x,y) =12 ?x 3/y;

2f∂

2x(x,y) =34

?y/x;∂2f∂y

2(x,y) =-14

?x/y 3;

2f∂y∂x

(x,y) =∂∂y ∂f∂x (x,y) =∂∂y 32
⎷xy =34 ?x/y ,

2f∂x∂y

(x,y) =∂∂x ∂f∂y (x,y) =∂∂x 12 ?x 3/y? =34 ?x/y 5

Fonctions homog`enes

D´efinition 21(Cˆone).Une partieCdeRnest un cˆone si pour toutx?Cet pour tout

t >0, on a aussitx?C.Exemple22.DansR2, les parties suivantes sont des cˆones :R2,R+2,R2-,C(θ1,θ2) =

Une fonctionfd´efinie surCest dite homog`ene de degr´ersi pour toutx?Cet pour tout t >0, on a f(tx) =trf(x).Exemple24.Soit sur (R?+)2les fonctionsf0,f1etf2d´efinies respectivement par f

0(x,y) = log(y/x), f1(x,y) =?x

2+y2, f2(x,y) =?x

3y .

Alorsfiest homog`ene de degr´ei, pouri= 0,1,2.Th´eor`eme 25(Th´eor`eme d"Euler).Soitfune fonction homog`ene de degr´ersur un cˆone

CdeRn, admettant des d´eriv´ees partielles par rapport `a toutes les variables. Alors, pour toutx?C, on a n i=1x i∂f∂x

i(x) =rf(x).Exemple26.Consid´erons la fonctionf2de l"exemple 24. On a calcul´e ses d´eriv´ees partielles

dans l"exemple 22. On v´erifie alors : x ∂f2∂x +y∂f2∂y =x×32 ⎷xy+y×12 ?x

3/y=?32

+12 ?x

3y= 2f(x,y).

4 D´eveloppements limit´es polynomiaux

Dans le cas des fonctions d"une seule variable, Un d´eveloppement limit´e polynomial est une approximation locale (au voisinage d"un point) d"une courbe par une courbe plus simple. Un d´eveloppement `a l"ordre un defau pointx0donne la tangente au graphe de fenx0, et un d´eveloppement `a l"ordre 2 donne le cercle osculateur. Le graphe d"une fonction de deux variables est une surface. Un d´eveloppement limit´e `a l"ordre 1 en donnera donc une approximation par un plan : le plan tangent, et un d´eveloppement limit´e `a l"ordre 2 donera la sph`ere osculatrice. Cette section est consacr´ee aux d´eveloppements limit´es `a l"ordre au plus deux des fonctions de deux variables.6 D´efinition 27(Polynˆome `a deux variables).Un polynˆome `a deux variablesP(x,y)est une somme de produits de puissances dexety:

P(x,y) =p?

i=0q j=0a i,jxiyj.

Siap,q?= 0, le polynˆomePest dit de degr´e totalp+q, de degr´epenxet de degr´eqeny.Exemple28.SoitP(x,y) =a+bx+cy+dx2+exy+fz2.Pest de degr´e 2 sidoueou

fest non nul. Sid?= 0 etf= 0, alorsPest de degr´e 2 enxet 1 eny. Sid=f= 0 et

e?= 0,Pest bien de degr´e total 2, mais de degr´e 1 enxet eny.D´efinition 29(D´eveloppement limit´e polynomial).Soitfune fonction d´efinie sur un

domaineDdeR2. On dit quefadmet un d´eveloppement limit´e polynomial `a l"ordrenau point(x0,y0)si il existe un polynˆomeP(x,y)de degr´enet une fonction?(x,y)tels que f(x,y) =P(x,y) + (|x|+|y|)n?(x,y),(1) lim

(x,y)→(x0,y0)?(x,y) = 0.(2)Remarque30.Les deux termes de l"approximation (1) sont ´egalement importants. Le

polynˆome approximantP(x,y) est appel´e terme (ou partie) principal, et le terme (|x|+ |y|)n?(x,y) est le terme de reste. Cette terminologie est justifi´ee par la condition (2). Cette condition assure que lorsque (x,y) est tr`es proche de (x0,y0), alors le terme de reste est beaucoup plus petit que n"importe quel terme de la partie principale. Si on n"avait pas cette condition, ce terme de reste pourrait ˆetre en fait plus grand que les autres, et (1) n"aurait aucun sens. La valeur exacte de la fonction?n"a pas d"importance; seule la condition (2)

est importante.Remarque31.Au lieu d"´ecrire le terme de reste sous la forme (|x|+|y|)n?(x,y), on pourrait

l"´ecrire (|x|n+|y|n)?1(x,y), ou (|x|2+|y|2)n/2?2(x,y), o`u les fonctions?1et?2satisfont aussi (2). La partie principale serait alors n´ecessairement la mˆeme.

La premi`ere cons´equence de cette d´efinition est l"unicit´e du d´eveloppement limit´e lors-

qu"il existe.Th´eor`eme 32.Soitfune fonction d´efinie sur un domaineDdeR2. Sifadmet un d´eveloppement limit´e polynomial `a l"ordrenau point(x0,y0), alors il est unique, i.e. si ilquotesdbs_dbs33.pdfusesText_39
[PDF] fonction exponentielle négative

[PDF] cours exponentielle terminale es pdf

[PDF] fonction exponentielle terminale es bac

[PDF] loi exponentielle négative

[PDF] fonction logarithme népérien terminale es

[PDF] fonction rationnelle ensemble de définition

[PDF] fonction rationnelle domaine de définition

[PDF] dérivée de ln lnx

[PDF] primitive de x

[PDF] primitive de x^2

[PDF] dérivées successives exercices corrigés

[PDF] dérivée successive

[PDF] dérivées n-ièmes usuelles

[PDF] dérivée nième de sin

[PDF] dérivée nième polynome