[PDF] Electronic Supplementary Information





Previous PDF Next PDF



HbA1c conversion table

mmol/mol. Conversion formulas. Old. = 00915 New + 2



A. Units Amounts and Concentrations

Note the abbreviations: 1 mmol = 1 millimole; 2 mmol = 2 millimoles; 5 µmol. = 5 micromoles. Concentrations in molarities are given by expressing the number of 



Topic 6: Common Lab Calculations

For example let's say you need 5.0 mmoles of moles to do other calculations (such as calculating molar equivalents or determining the limiting.



Care of Children and Young People with an HbA1C greater than 75

4. 5. HbA1c 58-75 mmols/mol. 5. 6. HbA1c 75 mmol/mol or above. 6. 7. Basic steps comparison chart. 8. 8. Appendix 1: Parents and Young People Education 



NICE Guideline Template

5. • intensify drug treatment and. 1. • agree a target and aim for an HbA1c level of 53 mmol/mol (7.0%). [new 2015]. 2. 1.3.4.2 Self-monitoring of blood 



Electronic Supplementary Information

4 (1 mmol) KOtBu (0.5 mmol)



4 Calculations Used in Analytical Chemisty

Ex. 4-1. How many moles and millimoles of benzoic acid (M=122.1 g/mol) are Ex 4-5. Describe the preparation of 2.00 L of 0.108 M BaCl2 from BaCl2 · 2H2O.



(Chapter 12) Electrolyte Solutions: Milliequivalents Millimoles

https://uomustansiriyah.edu.iq/media/lectures/4/4_2020_05_08!01_49_17_PM.pdf



HbA1c Conversion Chart. Older DCCT-aligned (%) and newer IFCC

IFCC-standardised values are rounded to the nearest whole number. 5. 6. 7. 8. 9. DCCT (%). IFCC. (mmol/mol).



Glycemic Status and Thromboembolic Risk in Patients With Atrial

thromboembolism among patients with HbA1c=49–58 mmol/mol (hazard ratio 1.49; 95% CI



[PDF] UNITÉS CONVERSIONS EQUIVALENTS & CALCULS DE DOSES

1 oct 2014 · IV m m o l = u n ité d e ré fé re n c e FORMULE DE CONVERSION IONS MONOVALENTS IONS BIVALENTS ION TRIVALENT mmol= milliéquivalent (mEq)



[PDF] Calculs et conversion dunités - Pharmacie des HUG

10 nov 2009 · 4 Le médicament: de la commande à l'administration CAS CLINIQUE 4 --- MILLIMOLES ET MILLIEQUIVALENTS Si la mole (mol) renseigne sur 



[PDF] mole g D D T T MM / 48800 = × × = ? ?

de volume V1=16 l et V2=14 l contenant 05 mole d'urée et o 8 moles de glucose respectivement mmol/l Le débit initial est égal a 42pmol/s



[PDF] Corrigés exercices sur la mole les masses molaires la

05 mol; b 20 mmol; c 15 kmol ; on applique la relation N= n x NA 4 x 120 + 9 x 10 + 3 x 140 + 2 x 160 = 131 g mol-1 6) Squalène



[PDF] CHIMIE Calculer les masses molaires des composés suivants

4 la concentration molaire du calcium en mol/L 4 L'azotémie (taux normal d'urée dans le sang) est comprise entre 25 et 75 mmol/L Ce



[PDF] TABLES DES VALEURS EN UNITES CLASSIQUES ET UNITES

0 à 4 µmol/l Sér Calcium Homme 88 à 103 mg/l 002495 220 à 258 mmol/l mmol/l LCR Glucose 05 à 08 g/l 5551 28 à 44 mmol/l





[PDF] Chapitre 1 La quantité de matière la concentration molaire et le

donc n(C8H15O3N) = 289 10–5 mol METHODE 4 : Savoir calculer la quantité de matière à partir de la masse volumique ? Principe



[PDF] Chapitre 5

4 Ce nombre est fantastiquement grand : 602 214 076 000 000 000 000 000 soit 5 3 2 - Constante d'Avogadro Le nombre d'entités par mole est une 

  • Comment calculer le nombre de mol ?

    Il suffit d'appliquer la relation n=m/M pour déterminer le nombre de mole.
  • Comment calculer la mole d'un atome ?

    La masse molaire moléculaire est égale à la somme des masses molaires atomiques des éléments chimiques constituant la molécule. L'unité est toujours le gramme par mole, notée g. mol–1. Ainsi, la masse molaire de la molécule d'eau H2O est : M(H2O) = 2 x M(H) + M(O) = 2 x 1,00 + 16,0 = 18,0 g.
  • Comment convertir le mmol en mg ?

    (mg/dL x 0,0259 = mmol/L).
  • Formules de conversion du milliéquivalent :
    Ainsi, 1 mEq est représenté par 1 mg d'hydrogène (1 mole) ou 23 mg de Na+, 39 mg de K+, etc.
Electronic Supplementary Information

Electronic Supplementary Information

Mechanistic

insight into an azo-radical promoted dehydrogenation of heteroarene towards N-heterocycles.

Amreen

K.

Bains a, Debashis Adhikari*aaDepartment of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar-

140306,

India.E-mail: adhikari@iisermohali.ac.inTable of Contents

1.Optimization Table

2.Control experiments2.A. Intermediate tracking and isolation2.B. Radical quenching experiment2.C. Procedure for the adduct formation of pyrimidinyl radical2.D. Detection of H2O2 2.E. Mercury drop test3.Kinetics analysis3.A. Kinetic analysis for dehydrogenative aromatization of 4 varying reaction conditions 3.B. Aromatic dehydrogenation of 4 at three different temperature3.C. Saturation kinetics for aromatic dehydrogenation of 4 at three different temperature4.1H and 13C NMR spectra 5.Reference

1.Optimization tableTable S1: Optimization of reaction conditions for pyrimidine synthesis

Yield (%)Entry Catalyst Base 3a1 - KOtBu 152 1 KOtBu (0.1eq) 333 1 KOtBu (0.25eq) 664 1 KOtBu (0.5eq) 905 1 (2.5 mol%) KOtBu 616 1 (7 mol%) KOtBu 91 7 1 (5 mol%) KOH 35 8 1 (5 mol%) K2CO3 n.r9a 1 (5 mol%) KOtBu 6010b 1 (5 mol%) KOtBu 8211c 1 (5 mol%) KOtBu 1912d 1 (5 mol%) KOtBu 6013e 1 (5 mol%) KOtBu 4514f 1 (5 mol%) KOtBu 92 15 1 - n.r Reaction condition: 1 (5 mol%), benzyl alcohol (1 mmol), 1-phenyl ethanol (1.25 mmol), benzamidine (1

mmol),

base (0.5 mmol), toluene (2 mL), 80 oC, O2 balloon, 8 h (isolated yield). aReaction temperature 80 oC,

without

O2 balloon, bReaction temperature 100 oC, without O2 balloon, cinert atmostphere, doxygenated toluene

as solvent, eReaction time: 6 h, fReaction time: 12 h.

2.Control experimentsScheme S1. Plausible pathway for 1,3,5 -triazine formation

Scheme S2. Plausible pathway for pyrimidine formation

2.A. Tracking of intermediates and isolation

In a 5 mL vial, benzyl alcohol (1 mmol), 1-(4-fluorophenyl)ethanol (1 mmol), KOtBu (0.5 mmol),

1 (5 mol%) were added followed by 2 mL toluene. The reaction mixture was stirred

at 80
oC for 5 h. Aldol condensation product (chalcone) was observed in 72% yield. Figure S1. 1H NMR spectrum (400 MHz) of 1-(4-fluorophenyl)-3-phenylprop-2-en-1-one in CDCl 3. In a 5 mL vial, pre-synthesized aldol condensation product chalcone (1 mmol), benzamidine (1 mmol), KOtBu (0.5 mmol), 1 (5 mol%) were added followed by 2 mL toluene. The reaction mixture was stirred at 80 oC for 5 h with O2 balloon. 2,4,6-triphenyl-pyrimidine was observed as desired product in 89% yield.

4 (1 mmol), KOtBu (0.5 mmol), 1 (5 mol%) was taken in 2 mL toluene. The reaction mixture

was stirred at 80 oC for 5 h with O2 balloon. 2,4,6-triphenyl-pyrimidine was isolated in 80% yield, concluding that 4 is the purported intermediate that leads to pyrimidine via dehydrogenative

aromatization.Subsequently, other controls were performed. The observation is given in the following table.Table S2: Pyrimidine formation under different reaction conditionsS.NoReaction Condition(Pyrimidine)Yield (%)1.Standard reaction condition83%2.Without catalyst (at 80 oC)18%3.Without base0%4.Inert condition11%5. NiCl2 as catalyst15%

In a 5 mL vial, 1-phenylethanol (2.25 mmol), benzamidine (1 mmol), KOtBu (0.5 mmol), 1 (5 mol%) were added followed by 2 mL toluene. The reaction solution was stirred at 80 oC for

8 h with O2 balloon. Desired product 2-methyl-2,4,6-triphenyl-1,2-dihydropyrimidine was

characterised by

ESI-MS.

(M+H = 325.1710). Figure S2. Mass spectrum of 2-methyl-2,4,6-triphenyl-1,2-dihydropyrimidine.

2.B. Radical quenching experiment

Table S3: Product yield upon varying equivalence of radical quencherS.NoTEMPO equivalenceYield (%)1.1.0 eq35%2.2.0 eq18%Benzyl alcohol (1 mmol), 1-phenylethanol (1.25 mmol), benzamidine hydrochloride (1

mmol), KOtBu (0.5 mmol), 1 (5 mol%) and varying equivalent of TEMPO, followed by 2 mL toluene were added. The reaction mixture was stirred at 80 oC for 8 h under 1 atm of O2, kept as a O

2-filled balloon. The pyrimidine product yield decreased with addition of TEMPO.TEMPO quenching during dehydrogenation of 4

In a 5 mL vial, 4 (1 mmol), KOtBu (0.5 mmol), 1 (5 mol%), and 1 mmol of TEMPO were added followed by 2 mL toluene. The resulting solution was kept under a balloon filled with O

2. The reaction mixture was stirred for 5 h at 80 oC. The reaction mixture was cooled to

room temperature and concentrated in vacuo. The desired product 2,4,6-triphenyl-pyrimidine was observed in

5% yield.

2.C. Procedure for the pyrimidinyl radical -TEMPO adduct In a 5 mL vial, 4 (1 mmol), KOtBu (0.5 mmol), 1 (5 mol%) were taken in 5 mL toluene.

After stirring the reaction mixture for 15 minutes, 0.6 equiv TEMPO (0.6 mmol) was added to the reaction mixture and the solution was kept on stirring at 80 oC for 5 h. The arrested radical by the formation of TEMPO-adduct was characterised by ESI-MS. (M-H+ =

464.2616).

Figure S3. Mass spectrum of pyrimidinyl radical -TEMPO adduct.

2.D. Detection of H2O2 For oxidation of alcohols, presence of H2O2 in the reaction mixture was analyzed by

spectroscopy s1 using the iodometric assay. Figure S4. UV-Visible spectrum of I3- ion formation in presence of H2O2.2.E. Mercury drop test To establish the homogeneous catalytic condition in the reaction, we have carried out mercury drop experiment. In a typical mercury drop test, 5 mL vial was charged benzyl alcohol (1 mmol), 1-phenylethanol (1.25 mmol), benzamidine hydrochloride (1 mmol), KO tBu (0.5 mmol) and 5 mol% of 1 followed by 2 mL toluene. To this reaction mixture, a drop of mercury was added and was closed with rubber septum. The resulting solution was spurged with O2. The reaction mixture was stirred at 80 oC for 8 h. The isolation of the product (in 72% yield) after 8 h confirmed the homogeneous behaviour of the catalyst in solution.

3.The kinetics analysis The kinetic experiments were analyzed by spectroscopy.3.A. Kinetic analysis for dehydrogenative aromatization of 4 varying reaction

conditions A)Reaction conditions: 1 (5 mol%), 4 (1 mmol), KOtBu (0.5 mmol), toluene (2 mL), 80 oC, O2 balloon, 8 h. (Optimized reaction

conditions)B)Reaction conditions: 4 (1 mmol), KOtBu (0.5 mmol), toluene (2 mL), 80 oC, O2 balloon, 8 h. (Absence

of

catalyst)C)Reaction conditions: 4 (1 mmol), KOtBu (0.5 mmol), toluene (2 mL), 140 oC, 8 h. (Absence of catalyst

and O

2 balloon)

Figure S5. Kinetic analysis (by spectroscopy)for pyrimidine formation.

3.B. Aromatic dehydrogenation of 4 at three different temperature

Reaction

conditions: 1 (5 mol%), 4 (1 mmol), KOtBu (0.5 mmol), toluene (2 mL), 70-90 oC, O2 balloon, 8 h. Set 1:

Figure S6. Kinetic analysis (by spectroscopy) for pyrimidine formation at 70 oC, 80 oC and 90 oC.Set 2: Figure S7. Kinetic analysis (by spectroscopy) for pyrimidine formation at 70 oC, 80 oC and 90 oC.

3.C. Saturation kinetics for aromatic dehydrogenation of 4 at three different

temperatures

Reaction conditions: 1 (5 mol%), 4 (0.3 M, 0.6 M, 0.9 M, 1.2 M, 1.5 M), KOtBu (0.5 mmol), toluene (2 mL),

70
oC, 80 oC, 90 oC, O2 balloon, 8 h. Figure S8. Kinetic analysis (by spectroscopy) for pyrimidine formation at 70 oC. Figure S9. Kinetic analysis (by spectroscopy) for pyrimidine formation at 80 oC.

Figure S10. Kinetic analysis (by spectroscopy) for pyrimidine formation at 90 oC.4.1H and 13C NMR spectra

Figure S11. 1H NMR spectrum (400 MHz) of 2b in CDCl3. Figure S12. 13C NMR spectrum (100 MHz) of 2b in CDCl3. Figure S13. 1H NMR spectrum (400 MHz) of 2c in CDCl3. Figure S14. 13C NMR spectrum (100 MHz) of 2c in CDCl3. Figure S15. 1H NMR spectrum (400 MHz) of 2d in CDCl3. Figure S16. 13C NMR spectrum (100 MHz) of 2d in CDCl3. Figure S17. 1H NMR spectrum (400 MHz) of 2e in CDCl3. Figure S18. 1H NMR spectrum (400 MHz) of 3a in CDCl3. Figure S19. 1H NMR spectrum (400 MHz) of 3b in CDCl3. Figure S20. 13C NMR spectrum (100 MHz) of 3b in CDCl3. Figure S21. 1H NMR spectrum (400 MHz) of 3c in CDCl3. Figure S22. 1H NMR spectrum (400 MHz) of 3d in CDCl3. Figure S23. 13C NMR spectrum (100 MHz) of 3d in CDCl3. Figure S24. 1H NMR spectrum (400 MHz) of 3e in CDCl3. Figure S25. 13C NMR spectrum (100 MHz) of 3e in CDCl3. Figure S26. 1H NMR spectrum (400 MHz) of 3f in CDCl3. Figure S27. 1H NMR spectrum (400 MHz) of 3g in CDCl3. Figure S28. 1H NMR spectrum (400 MHz) of 3h in CDCl3. Figure S29. 1H NMR spectrum (400 MHz) of 3i in CDCl3. Figure S30. 1H NMR spectrum (400 MHz) of 3j in CDCl3. Figure S31. 13C NMR spectrum (100 MHz) of 3j in CDCl3. Figure S32. 1H NMR spectrum (400 MHz) of 3k in CDCl3. Figure S33. 13C NMR spectrum (100 MHz) of 3k in CDCl3.

Figure S34. 1H NMR spectrum (400 MHz) of 3l in CDCl3.5.ReferenceS1) H. Jenzer, W. Jones, H. Kohler. H, J. Biol. Chem. 1986, 261, 15550-15556.

quotesdbs_dbs33.pdfusesText_39
[PDF] entité microscopique definition

[PDF] point critique derivee

[PDF] y=ax+b trouver b

[PDF] on prépare un volume v=0.200 l d'une eau iodée

[PDF] déterminer les réels a b et c sachant que

[PDF] p(z)=z^3-3z^2+3z+7

[PDF] déterminer les réels a b et c tels que

[PDF] déterminer les réels a et b d'une fonction exponentielle

[PDF] méthode d'identification des coefficients

[PDF] quel est mon type de mémoire

[PDF] type de mémoire humaine

[PDF] test type de mémoire visuelle auditive kinesthésique

[PDF] test de mémoire gratuit

[PDF] test type de mémoire collège

[PDF] nombre d'oxydation de l'oxygène