[PDF] Chapitre 1 : 2D Courbes Paramétrées et coordonnées polaires





Previous PDF Next PDF



La droite tangente à un cercle

La droite tangente (t) sera perpendiculaire au rayon au point de tangence (P) l'équation de la tangente t au cercle (x – 2)2 + (y + 3)2 = 52 au point de.



Chapitre 3 : Équation du cercle dans le plan

d) le centre du cercle est C(1 ; -1) et le cercle est tangent à. (d) : 5x + 9 = 12y ; déterminer l'équation d'un cercle passant par trois points.



Corrigé : Le cercle

Soient ? le cercle de centre C(4 ; 2) et de rayon r = /13 et le point T(7 ; 4). c) Etablir l'équation d'une tangente t à ? passant par T.



PRODUIT SCALAIRE DANS 2 Etude analytique (2) -Applications

2- Ecrire l'équation de la tangente au cercle ( ) en . 2.3 Tangente à un cercle ( ) passante par un point à l'extérieure de ( ). Exercice :.



Construction de cercles donnés par trois conditions

On peut en imaginer bien d'autres (par exemple être tangent `a un cercle 1) L'ensemble des cercles de P passant par un point m ?.



Chapitre 1 : 2D Courbes Paramétrées et coordonnées polaires

points. Page 20. La courbe semble être un cercle. Pour convertir l'équation polaire en Cartésienne 



Chapitre8 : Cercles et sphères

Le cercle de centre ? et de rayon R est l'ensemble des points M de ? tels que (x0y0)



Courbes paramétrées

Donner une équation cartésienne de la tangente en tout point de la courbe. Solution. Page 13. COURBES PARAMÉTRÉES. 3. POINTS SINGULIERS – BRANCHES INFINIES.



Fonctions de deux variables

de niveau passant par A est x2 + y2 = 25 c'est donc le cercle de l'équation de la tangente au graphe au point (a



Dans un repère (orlj)

y) est un point du cercle.



[PDF] Chapitre 3 : Équation du cercle dans le plan

Exercice 3 16: Déterminer l'équation d'un cercle tangent à Ox et passant par A(-2 ; 1) et B(5 ; 8) Exercice 3 17: Déterminer les équations des cercles 



[PDF] CHAP7 LE CERCLE 71 Equations 711 Définition Le cercle est le

Si deux cercles sont orthogonaux alors les tangentes aux points d'intersection sont perpendiculaires La tangente à l'un passe par le centre de l'autre et 



[PDF] Etude analytique du cercle - AlloSchool

On peut considérer le point comme étant un cercle de rayon nul 1) Cercle défini par son 2 2 Equation de la tangente à un cercle en un de ses points





[PDF] Construction de cercles donnés par trois conditions

Nous nous limiterons ici `a deux types de conditions : • le cercle passe par un point donné • le cercle est tangent `a une droite donnée On peut en imaginer 



[PDF] Les équations des deux tangentes au cercle à partir dun point

Et équations des deux tangentes au cercle qui sont parallèles à une droite On trace le cercle de centre C passant par A et donc aussi par ?



[PDF] Chapitre8 : Cercles et sphères - Melusine

Soit C un cercle de centre ? et soit M0 un point de C Il résulte de ce qui précède que la tangente à C passant par M0 est la droite passant par M0 et 



[PDF] Equations droites et cercles - Eduscol

Equation EQUATIONS DE DROITES ET DE CERCLES Méthode 3: Déterminer une équation de la droite passant par le point 1;2 et admettant 1



[PDF] Corrigé : Le cercle - SportPro

Exercice 3 Soient ? le cercle de centre C(4 ; 2) et de rayon r = /13 et le point T(7 ; 4) a) Calculer l'équation des tangentes t1 et t2 à ? de pente 3 2 b 



[PDF] 101 - cercles

1 7 Construction d'on cercle C passant par deux points donnés Aerß et tangent à un cercle donné I': Suit C in cercle passant par A et B et

:
Chapitre 1 : 2D Courbes Paramétrées et coordonnées polaires

Chapitre 1 : 2D

Courbes Paramétrées et coordonnées polaires

Partie 2 : Courbes polaires

Un système de coordonnées représente un point du plan par un couple de nombres (réels en général) appelés coordonnées.

Systèmes de coordonnées dans un plan

Habituellement, on utilise des

coordonnées cartésiennes qui correspondent à des projections sur des axes perpendiculaires.

On peut également utiliser un système de

coordonnées introduit par Newton, appelé système de coordonnées polaires.

Pole et axe polaire

origine). Ontraceunrayon(demi-droite) partant deO, on l'appelle adže polaire. Cet axe est généralement tracé horizontalement vers la droite et correspond ă l'adže des abscisses (x) en coordonnées

Cartésiennes.

O poleaxe polaire

Coordonnées polaires

SiPestunpoint duplan(тO), soient :

ƒrladistance deO àP.

radians) entrel'adže polaireetlaligne OP.

SiP =O, alorsr =0, onconvient que

(0, ș) representelepole pourtoute valeurdeș.

P estreprésentéparlecouple(r,ș).

r,șsontappeléscoordonnées polairesdeP. On étend la définition des coordonnées polaires(r,ș)au cas oùrest On convientque les points (-r,ș)et(r,ș)sont sur la même droite (radiale) passant par Oet à lamêmedistance | r | deO,maissur les côtés opposéspar rapport àO. Sir> 0, le point(r, ș) se trouve dansle mêmequadrant queș. Sir< 0,ilse trouvedansle quadrant situé du côtéopposépar rapport au pole.

Notonsque(r, ș)

représentele même point que(r, ș+ ʌ).

Coordonnées polaires

Exercice

Tracerlespoints de coordonnéespolaires:

a.(1, 5ʌ/4) b.(2, 3ʌ) c.(2, 2ʌ/3) d.(3, 3ʌ/4)

Solution

Le point (1, 5ʌ/4) :

Le point (2, 3ʌ):

Le point (2, 2ʌ/3) :

Le point (3, 3ʌ/4) :

ƒIl estsituédansle 4èmequadrant.

ƒangle 3ʌ/4 estdansle secondquadrant

etrestnégatif.

CARTÉSIENNES ET POLAIRES

En coordonnéesCartésiennes,chaquepointaune

représentationunique. Alorsque, encoordonnéespolaires,chaquepointa une infinité dereprésentations. Par exemple, le point (1, 5ʌ/4) deexercice précédentpeut : (1, 3ʌ/4), (1, 13ʌ/4), or(1, ʌ/4). Unpointde coordonnéespolaires(r, ș) (r, ș+ 2nʌ) et(-r, ș+ (2n + 1)ʌ)oùnestunentierrelatif quelconque. Lepassage descoordonnées polairesauxCartésiennes

ƒLe pole correspond àorigine.

ƒpolairecoincide avecdes abscisses positives.

Sile point P a pour coordonnées

polaires (r, ș), sescoordonnées

Cartésiennes(x, y) sont :

cos sin xr yr T

CARTÉSIENNES ET POLAIRES

Pour trouverretșquandx etysont connus,onutilise les

équations:

ƒElle sont déduitesdeséquations

précédentesousimplement"lues» sur lafigure.

2 2 2tanyr x yx

CARTÉSIENNES ET POLAIRES

Exercices

1.Convertirles coordonnées polaires dupoint (2, ʌ/3) en

coordonnées Cartésiennes.

2.Représenterle point decoordonnées Cartésiennes(1, 1)

en termes de coordonnéespolaires.

Solution 1

ƒPuisquer= 2etș= ʌ/3,

ƒDonc,le point est(1, ) en coordonnées Cartésiennes.1cos 2cos 2 132

3sin 2sin 2. 332

xr yr T ST 3

Solution 2

Sionchoisitr> 0:

Commele point (1, 1) se trouve dansle 4èmequadrant, onpeutchoisirș= ʌ/4ouș= 7ʌ/4.

Aussi,uneréponsepossible est: ( , ʌ/4)

Uneautreréponsepossible est: ( ,7ʌ/4)

2 2 2 21 ( 1) 2

tan 1 r x y y x 22

Base comobile

Le vecteur position du point M dans R: OMest souvent noté r, on noteurle vecteur unitaire de même direction: r= rur= r (cosux+ sinuy), uvecteur unitaire orthogonal à ur(sens direct). (M, ur, u) forme un repère orthonormé direct comobile. u= cos(+/2) ux+ sin(+/2) uy= -sinux+ cosuy On voit facilement, en dérivant les coordonnées de uret upar rapport à que : O

Repère O, et de base

orthonormée directe (ux, uy). Le point Oest le pole et O,ux coordonnées polaires.

Les coordonnées cartésiennes xet yen

fonction des coordonnées polaires ret ș:

Courbespolaires

r= f(ș) [ou, plus généralement,

F(r, ș

moins une représentation polaire (r, ș), dont les coordonnées r =2 ?

ƒcette courbe est constituée de tous les

points (r, ș) avec r = 2.

ƒr représente la distance du point

au pole.

Donc, la courbe r = 2 est le cercle de

centre O et rayon 2.

En général, équation r = areprésente

un cercle de centre O et rayon |a|.

Exercice

Tracer la courbe polaire ș= 1.

Solution

ƒCettecourbe est constituéedetous lespoints (r, ș) tells que polaireșsoit1 radian. ƒladroitepassantparO et faisantun angle de1radian avec polaire.

Notonsque :

Lespoints (r, 1) de

cettedroiteavecr> 0 sont dansle 1erquadrant.

Les points (r, 1) avec r< 0 sont

dansle 3èmequadrant.

Exercice

a.Tracerlacourbe polairer= 2 cos ș. b.Trouver une équationCartésiennedecettecourbe.

Solution :

Pour commencer,nousindiquonslesvaleurs derpour certaines valeurs deș.

On traceles pointscorrespondantpour (r, ș).

Puis, on jointcespoints pourtracerla

courbecommesuit.

La courberessembleà un cercle.

On a seulementutilisé les valeurs deșcomprises entre0 et ʌsionlaisseșcroître au-delà deʌ, onretrouvelesmêmes points.

La courbesembleêtreun cercle.

Pourconvertirpolaire enCartésienne, onutilise:

ƒx= rcos ș,donccos ș= x/r.

ƒquation r= 2 cos șdevientr= 2x/r.

ƒCe qui donne: 2x =r2= x2+ y2oux2+ y2 2x= 0

En complétantlecarré, onobtiend: (x 1)2+y2=1

ƒestcellecercle decentre(1, 0) et derayon1.

La figure montre que le cercle a

quationr =2 cosș.

ƒangle OPQestun angle

droit, doncr/2 =cos ș.

Symétrie

Quandontrace une courbepolaire, ilest

quelquefoiscommode de tirer parti des symétries.

Sipolaireestinvariante

lorsqueșestremplacéparș, lacourbe estsymétriquepar rapportpolaire.

Lacourbeprécedentestsymétriquepar

polaire, puisquecos(ș)=cos ș. Cette propriété desymétrieaurait pu êtreutiliséepour tracerlacourbe. On a juste besoin de placer les points pour0 șʌ/2 et ensuite de faire une réflexion polaire pourobtenirle cerclecomplet.

Autressymétries

Siéquation estinvariantelorsquerest

remplacéparr, ou quandșestremplacé parș+ ʌ, lacourbe estsymétriquepar rapportaupole.

Ceci veut dire que lacourbe estinvariante

parrotationorigine.

Siéquation estinvariantequandșest

remplacéparʌș, lacourbe est symétriquepar rapport à laverticaleș= ʌ/2.

Exemple : parabole

Comme sinș= sin(ʌș), lacourbe estsymétriquepar rapport à la verticaleș= ʌ/2. Les valeursprisespar rsont:

Cecicorrespond à la courbetracéeau dessus

(paraboleverticale).

On le vérifieenpassant à cartésienne.

O r 01 /2 1

3/21/2

r(1 sin) =1, donc : r=1 + rsin En élevant au carré on a : r2=(1 + rsinsoit : x2+ y2= (1 + y) Après développement : x2+ y2=1 +2y+ yon voit que : x2=1 +2y= 2(1/2 + y) y sommet Sde la parabole. Si on note Y= y

Y= x2/2

Onretrouvedelaparabole.

S

Exercice

Tracerlacourbe r =1 +sinș.

Solution

ƒOn commence par tracer le graphedela fonction 1 +sinșen

Cartésiennes

haut.

ƒrcorrespondant à

une valeur deș, et son sens de variation.

Par exemple, on voit que, lorsque

șaugmente de 0 à ʌ/2, r (la

distance de O) augmente de 1 à 2.

On en déduit la forme de la partie

correspondante de la courbe polaire.

Lorsque șaugmente de ʌ/2à ʌ,

la figure montre que rdécroit de 2

à 1.

On endéduitla formede la partie

suivantede la courbe.

Quandșcroitdeʌà3ʌ/2,r

décroitde1 à0.

Finalement, quandșpassede

3ʌ/2à2ʌ, rcroitde0 à1.

La courbe obtenue est appeléecardioïdeà cause de sa formede coeur.

Cettecourbe est symétriqueș= ʌ/2,du

fait quesin(ʌș) = sin ș

TANGENTES AUX COURBES POLAIRES

paramétriquesdelacourbe: vecteurtangentetlapente. x =r cos ș= f (ș) cos ș y =r sin ș= f (ș) sin ș dx/d=dr/dcos ș-rsin ș dy/d=dr/dsin ș+ rcos ș

Exemple

r= a(où a est une constante positive). Montrer que le vecteur unitaire tangent à la courbe au point Mest le vecteur que nous avons noté u.

Solution :

En remplaçant dans les équations de la page précédente on obtient : -à-dire ru, donc le vecteur tangent est de norme ret le vecteur unitaire tangent est u dx/d=-rsin ș dy/d=rcos ș Les tangenteshorizontalesse trouventaux points pour lesquelsdy/dș= 0 (pourvuque dx/dș0). De même, les tangentesverticalessontaux points où dx/dș= 0 (pourvuque dy/dș0).

TANGENTES AUX COURBES POLAIRES

sin cos cos sin dy drrdydd dx drdxrdd TT TTTT

Notons que, au pole, r =0, si dr/d

donnant la pente se simplifie en : r =2cosșpasse par le pole (r= 0) quand șʌ/2.

TANGENTES AUX COURBES POLAIRES

tan if 0dy dr dx dT ztan if 0dy dr dx dT z

Comme le sinus est non nul en /2,

on en déduit que la droites șʌ/2 (verticale) est tangente à la courbe r =2cosș

Exercice :

2. Calculer les valeurs maximales et minimales de ret indiquer en

quels points ces valeurs sont atteintes.quotesdbs_dbs33.pdfusesText_39
[PDF] calculer le centre du cercle circonscrit d'un triangle

[PDF] division décimale cm2 exercices

[PDF] division décimale cm2

[PDF] division avec diviseur décimal

[PDF] determiner la nature d'une serie

[PDF] placenta

[PDF] détournement d'argent

[PDF] détournement de fond public

[PDF] le détournement dans l'art

[PDF] détournement définition

[PDF] détournement d'avion

[PDF] détournement de fonds privés

[PDF] détournement définition juridique

[PDF] publicité inspiré d'oeuvre d'art

[PDF] pub et art art et pub un lien transversal