[PDF] [PDF] Chapitre 4 Formules de Taylor





Previous PDF Next PDF



Chapitre 4 Formules de Taylor

Une autre façon d'écrire un développement de Taylor au point x0 consiste `a de Taylor-Lagrange `a l'ordre 4 au voisinage de 0 s'écrit ex =1+ x + x2. 2.



Fonctions de plusieurs variables

1 nov. 2004 On peut aussi parler de développement limité `a l'ordre 2 pour une fonction de plusieurs vari- ables. C'est lié aux dérivées partielles secondes ...



Taylor général

Rappel : l'approximation quadratique. L'approximation de Taylor d'ordre 2 ou polynôme de Taylor d'ordre 2 d'une fonction f deux fois dérivable en un point 



1 La formule de Taylor-Young

Supposons la formule vraie pour n?1 n ? 2



Formule de Taylor développements limités

http://www.gm.univ-montp2.fr/spip/IMG/pdf/mathsTD4.pdf



Chapitre 2 - Différentielles dordre supérieur et formule de Taylor

Ce théorème est une généralisation du développement de Taylor-. Lagrange pour les fonctions d'une variable réelle comme l'inégalité des ac- croissements finis 



Chapitre 11. Formules de Taylor et développements limités

On écrit la formule de Taylor avec reste intégral à l'ordre 2 entre 0 et x



Les développements limités.

La formule de Taylor-Young à l'ordre 2 au point 0 de ex s'écrit ex f possède un développement limité à l'ordre n en x0 s'il existe un polynôme à ...



Formules de Taylor. Applications. 1 Formule de Taylor avec reste

2. Pour les applications : séries enti`eres. 1 Formule de Taylor avec reste Définition 1.1 On appelle partie réguli`ere d'ordre n du développement de ...



Développements limités

2. intégration : toute primitive de f admet un développement limité d'ordre n + 1 en 0 dont le polynôme de Taylor est une primitive de 



[PDF] Chapitre 4 Formules de Taylor

Une autre façon d'écrire un développement de Taylor au point x0 consiste `a de Taylor-Lagrange `a l'ordre 4 au voisinage de 0 s'écrit ex =1+ x + x2 2



[PDF] Formules de Taylor

La formule de Taylor du nom du mathématicien Brook Taylor qui l'établit en 1712 permet l'approximation d'une fonction plusieurs fois dérivable au 



[PDF] Chapitre 11 Formules de Taylor et développements limités - Unisciel

On écrit la formule de Taylor avec reste intégral à l'ordre 2 entre 0 et x pour la fonction f(x) = ex Comme f (x) = f (x) = f (x) = exona: f(0) = f (0) 



[PDF] Taylor général

Le polynôme de Taylor `a l'ordre 3 de x ?? x4 en 1 est x ?? 1 + 4(x ? 1) + 6(x ? 1)2 + 4(x ? 1)3 Page 7 Exercice Exo 1 Calculer le polynôme de Taylor 



[PDF] 1 La formule de Taylor-Young

Supposons la formule vraie pour n?1 n ? 2 et passons `a n On applique la formule de Taylor-Young `a l'ordre n ? 1 ? 1 `a la fonction f qui en vérifie



[PDF] Fonctions de plusieurs variables

1 nov 2004 · On peut aussi parler de développement limité `a l'ordre 2 pour une fonction de plusieurs vari- ables C'est lié aux dérivées partielles secondes 



[PDF] Formules de Taylor et développements limités

2 Donner un développement limité `a l'ordre 3 en 0 de f Exercice 4 7 (DL d'une fonction réciproque) On 



[PDF] 2 Séries de Taylor - GERAD

Remarques : ? Si R = 0 la série converge uniquement pour x = a ? Si R = ? la série converge pour tout x ? R ? L'intervalle de convergence 



[PDF] Développements limités

Exemple 1 2 (Formule de Taylor-Young aux ordres 1 et 2) 1 Ordre 1 : si f est dérivable en x0 On dit que f admet un développement limité d'ordre n en x0



[PDF] Formules de Taylor et Développements Limités

Si f admet un développement limité d'ordre n au voisinage de x0 alors la partie régulière de ce déve- loppement limité est unique 16 3 2 Formule de Taylor- 

  • Quel est la formule de Taylor ?

    La formule de Taylor, du nom du mathématicien Brook Taylor qui l'établit en 1712, permet l'approximation d'une fonction plusieurs fois dérivable au voisinage d'un point par un polynôme dont les coefficients dépendent uniquement des dérivées de la fonction en ce point.
  • Comment utiliser la formule de Taylor ?

    La formule de Taylor donne une réponse simple `a ces deux probl`emes. La rêgle de l'Hôpital* est un moyen simple de calculer certaines limites de la forme indéterminée 0/0 ou ?/?. On peut rendre l'argument plus rigoureux en utilisant la formule du chapitre 2 : f(a + ?x) = f(a) + f (a)?x + o(?x) .
  • La rigueur en mathématiques s'organise par la genèse du concept de «limite» et c'est d'Alembert qui a donné un nouvel aspect à l'analyse.
[PDF] Chapitre 4 Formules de Taylor

Chapitre 4Formules de Taylor

La formule de Taylor, du nom du math´ematicien Brook Taylor qui l"´etablit en 1715, permet l"approximation d"une fonction plusieurs fois d´erivable au voisinage d"un point par

un polynˆome dont les coefficients d´ependent uniquement des d´eriv´ees de la fonction en ce

point. La premi`ere ´etape est la formule (0+) =(0) +(0) +() qui montre que, siest d´erivable, alorsest approch´ee par un polynˆome de degr´e 1 (une droite). Comment faire pour augmenter le degr´e?

4.1 Les trois formules de Taylor

Notations 4.1.1.Soientun intervalle deR,0un point int´erieur `a, et:R une fonction. On fixe un entier naturel. On dit qu"une fonction est de classesursi elle estfois d´erivable sur, et si sa d´eriv´ee-i`eme est continue sur. Th´eor`eme 4.1.2(Taylor-Young).Supposons quesoit de classesur. Alors, pour toutRtel que0+appartienne `aon peut ´ecrire (0+) =(0) +(0) +2

2!(2)(0) ++!()(0) +()

=0 !()(0) +() o`u()est une fonction qui tend vers0quandtend vers0. 40

D´efinition 4.1.3.La somme?

=0 !()(0) s"appelle le polynˆome de Taylor de`a l"ordreau point0. Par convention, 0! = 1! = 1. Remarque.Une autre fa¸con d"´ecrire un d´eveloppement de Taylor au point0consiste `a poser=0+. Le th´eor`eme de Taylor-Young s"´enonce alors de la fa¸con suivante : si est de classesur, alors pour touton peut ´ecrire =0(0) !()(0) + (0)(0) o`u(0) tend vers 0 quandtend vers0. Exemples.a) La formule de Taylor-Young pour la fonction sin() `a l"ordre 2+ 1 en 0 s"´ecrit sin() =3

3!+55!++ (1)2+1(2+ 1)!+2+1()

En effet, on doit calculer les d´eriv´ees successives de sin() en 0. Nous avons sin(0) = 0sin(0) = cos(0) = 1sin(0) =sin(0) = 0

Plus g´en´eralement, pour toutNnous avons

sin (2)(0) = 0 et sin(2+1)(0) = (1)cos(0) = (1) d"o`u le r´esultat. b) La formule de Taylor-Young pour la fonction`a l"ordreen 0 s"´ecrit = 1 ++2

2+33!++!+()

En effet,est sa propre d´eriv´ee.

Par exemple, poursuffisamment petit, le polynˆome3

3!donne une valeur approch´ee

de sin(). On aimerait connaˆıtre la pr´ecision de cette approximation, c"est-`a-dire contrˆoler

la taille du reste3(). Nous allons d"abord exprimer le reste sous la forme de Lagrange,ce qui constitue une g´en´eralisation du th´eor`eme des accroissements finis. Th´eor`eme 4.1.4(Taylor-Lagrange).Supposons quesoit de classe+1sur. Alors, pour toutRtel que0+appartienne `a, il existe]01[tel que l"on ait (0+) =? =0 !()(0) ++1(+ 1)!(+1)(0+) (notons ici qued´epend de). 41
Exemples.a) Consid´erons `a nouveau la fonction sin(). La formule de Taylor-Lagrange `a l"ordre 3 au voisinage de 0 s"´ecrit sin() =3

3!+44!cos()

avec]01[. Ainsi, on peut dire que3

3!constitue une valeur approch´ee de sin()

avec une erreur inf´erieure ou ´egale `a 4 4!. b) Consid´erons encore. La formule de Taylor-Lagrange `a l"ordre 4 au voisinage de 0 s"´ecrit = 1 ++2

2+33!+44!+55!

Comme la fonctionest croissante, on peut dire que. Ceci permet par exemple de donner une valeur approch´ee de. En effet, nous avons = 1 + 1 +1

2+16+124+1120

avec 3 donc, l"erreur est de l"ordre de3

120=140.

c) Soitun polynˆome de degr´e au plus. Alorsest de classe+1et(+1)= 0. La formule de Taylor-Lagrange `a l"ordreau voisinage de 0 nous dit que, pour toutR =0 !()(0)

En effet, le reste est nul! Ainsi, les coefficients desont donn´es par les d´eriv´ees successives

deen 0. Ce r´esultat peut aussi se d´emontrer par un calcul alg´ebrique (sans recourir `a l"analyse). D´emonstration de la formule de Taylor-Lagrange.Si= 0, c"est vrai. Fixons= 0, pour simplifier les notations, nous posons=0+. Nous cherchons donc `a montrer l"existence d"un r´eelstrictement compris entre0ettel que l"on ait =0(0) !()(0) +(0)+1(+ 1)!(+1)()

On introduit la fonctiond´efinie par

=0() !()()()+1 o`uest un r´eel choisi de telle fa¸con que(0) = 0, c"est-`a-dire : =0(0) !()(0) +(0)+1 42
Il est clair, vu la d´efinition de, que() = 0. Pour d´emontrer le th´eor`eme, il suffit de montrer queest de la forme(n+1)() (+1)!pour un certain. Vu les hypoth`eses, nous pouvons appliquer le th´eor`eme de Rolle pour trouver(stric- tement compris entre0et) tel que() = 0. Calculons. Par la formule de d´erivation d"un produit, nous avons =1()1 =0()!(+1)() +(+ 1)() 1? =0() !(+1)()? =0()!(+1)() +(+ 1)() d"o`u !(+1)() +(+ 1)() (+1)() !+(+ 1)?

L"´egalit´e() = 0 se traduit donc par :

=(+1)() (+ 1)! d"o`u le r´esultat. D´emonstration de la formule de Taylor-Young.On applique la formule de Taylor-Lagrange `a l"ordre1 pour la fonction. Il existe donc]01[ tel que l"on ait (0+) =1? =0 !()(0) +!()(0+)

On pose alors

() =1 !?()(0+)()(0)? Le nombre, bien que d´ependant de, appartient `a ]01[. Nous avons donc lim

0(0+) =0

Comme()est continue en0, on en d´eduit que

lim

0() = 0

43

Enfin, par d´efinition mˆeme de, nous avons

!()(0+) =!()(0) +() d"o`u le r´esultat, en injectant ceci dans la formule de d´epart. Il existe aussi une autre expression du reste, qui constitue une g´en´eralisation du th´eor`eme fondamental du calcul diff´erentiel et int´egral (voir le chapitre suivant). Th´eor`eme 4.1.5(Taylor avec reste int´egral).Supposons quesoit de classe+1sur . Alors, pour toutRtel que0+appartienne `aon a (0+) =? =0 !()(0) ++1!? 1 0 (1)(+1)(0+)d

Remarque.Le reste int´egral admet une autre expression. Plus pr´ecis´ement, on a l"´egalit´e

+1 1 0 (1)(+1)(0+)d=? 0+

0(0+)!(+1)()d

qui d´ecoule tout simplement d"un changement de variable0+. Remarque.Pour certaines fonctions, nous pouvons montrer que le reste tend vers z´ero

quandtend vers l"infini; ces fonctions peuvent ˆetre d´evelopp´ees ens´erie de Taylordans

un voisinage du point0et sont appel´ees desfonction analytiques.

4.2 Op´erations sur les polynˆomes de Taylor

Soientetdeux fonctions de classe. Comment obtenir le polynˆome de Taylor de +, de, de , et caetera, `a partir de ceux deet? Commen¸cons par d´emontrer l"unicit´e du polynˆome de Taylor d"une fonction donn´ee en un point donn´e. Lemme 4.2.1.Soitde classesur, et soit0. Supposons qu"il existe un polynˆomede degr´e au pluset une fonctionqui tend vers0en0, tels que l"on ait (0+) =() +() pour touttel que0+. Alorsest le polynˆome de Taylor de`a l"ordreau point0. 44
D´emonstration.Commeest de classe, et queest un polynˆome, la fonction () est ´egalement de classe. De plus, lespremi`eres d´eriv´ees de() s"annulent en 0. On peut donc ´ecrire, pour tout 01, ()(0) =()(0) D"autre part, la formule de Taylor-Lagrange `a l"ordreen 0 pour le polynˆomenous dit que, pour toutR, =0 !()(0) (le reste ´etant nul comme on l"a vu plus haut). Ainsi =0 !()(0) ce qu"on voulait. Voici comment les op´erations alg´ebriques usuelles se traduisent au niveau des po- lynˆomes de Taylor. Th´eor`eme 4.2.2.Soientetdeux fonctions de classesur, et soit0. Soit (resp.) le polynˆome de Taylor de(resp.) `a l"ordreau point0. Alors (1)le polynˆome de Taylor de+`a l"ordreen0est+ (2)le polynˆome de Taylor de`a l"ordreen0esttronqu´e en degr´e (3)si(0)= 0, alors est de classeau voisinage de0et le polynˆome de Taylor de est le quotient deparselon les puissances croissantes `a l"ordre.

Quelques commentaires :

1)est un polynˆome de degr´e au plus 2, sontronqu´e en degr´eest le polynˆome

obtenu en supprimant tous les termes de degr´e strictement sup´erieur `a. Dans la pratique, ce ne sera mˆeme pas la peine de calculer ces termes...

2) Ladivision selon les puissances croissantesdepar`a l"ordreest d´efinie comme

suit : si(0)= 0, alors il existe un unique couple () de polynˆomes tel que l"on ait () =()() ++1() avec deg() On dit queest le quotient deparselon les puissances croissantes `a l"ordre, et queest le reste. Cette division, contrairement `a la division euclidienne despolynˆomes (que l"on appelle aussi division selon les puissances d´ecroissantes), a pour effet d"augmenter le degr´e du reste, au lieu de le diminuer. Ainsi, il n"y a pas une seule divisionselon les puissances croissantes, il y en a une pour chaque ordre. Plusaugmente, plus le degr´e du quotient et du reste augmentent. 45
Exemples.On ´ecrit Taylor-Young `a l"ordre 3 en 0 pour sin() sin() =3

6+31()

et pour ln(1 +) ln(1 +) =2

2+33+32()

d"o`u l"on d´eduit : a) Taylor-Young `a l"ordre 3 en 0 pour la diff´erence sin()ln(1 +) =2

232+3()

b) Taylor-Young `a l"ordre 3 en 0 pour le produit sin()ln(1 +) = (3

6)(22+33) +3()

=23 2+3() D´emonstration.D"apr`es Taylor-Young, il existe des fonction1et2qui tendent vers 0 en 0 telles que, pour touttel que0+, (0+) =() +1() et (0+) =() +2() En additionnant ces deux expressions, et en appliquant le lemme, le point (1) en d´ecoule. (2) Nous avons ()(0+) = (() +1())(() +2()) =()() +(()2() +1()() +1()2()) =()() +3() o`u3() est une fonction qui tend vers 0 en 0. Il suffit alors d"´ecrire ()() =()() +4() o`u()() est le tronqu´e deen degr´e. Ainsi ()(0+) =()() +(() +3()) 46
d"o`u le r´esultat (via le lemme). (3) Soit () =()() ++1() avec deg() le r´esultat de la division deparselon les puissances croissantes `a l"ordre. Nous avons alors, pour tout, ()()() =+1() d"o`u (0+)(0+)() = (() +1())(() +2())() =()()() +(1() +2()()) =+1() +() =3()

Ainsi, en divisant tout par(0+), nous obtenons

(0+) (0+)() =3()(0+) Quandtend vers 0,(0+) tend vers(0)= 0, donc la fonction3() (0+)tend vers 0.

D"o`u le r´esultat.

On peut aussi composer les polynˆomes de Taylor. Th´eor`eme 4.2.3.Soient:Ret:Rdeux fonctions de classetelles que (), et soit0. Soitle polynˆome de Taylor de`a l"ordreau point0, et soitle polynˆome de Taylor de`a l"ordreau point(0). Alors le polynˆome de Taylor de`a l"ordreau point0est le polynˆome compos´etronqu´e en degr´e. D´emonstration.Mˆeme principe que pr´ec´edemment. Remarque.a) Si une fonction est paire (resp. impaire), alors son polynˆome de Taylor d"ordreen 0 ne contient que des puissances paires (resp. impaires) de. b) On peut d´eriver (ou int´egrer) les polynˆomes de Taylor.Plus pr´ecis´ement, siest de classealorsest de classe1, et le polynˆome de Taylor de`a l"ordre1 au point0s"obtient en d´erivant le polynˆome de Taylor de`a l"ordreen ce mˆeme point. Citons quelques applications des formules de Taylor : - Calcul de valeurs approch´ees de fonctions usuelles - Calcul de limites - Position du graphe d"une courbe par rapport `a sa tangente 47
Exemple.Le dessin ci-dessous compare graphiquement la fonction sin() avec ses po- lynˆomes de Taylor d"ordres 3, 5 et 7 en 0. sin() 36

36+5120

36+512075040

48
quotesdbs_dbs33.pdfusesText_39
[PDF] développement limité formule de taylor pdf

[PDF] formule de taylor maclaurin pdf

[PDF] développement limité usuels en l'infini

[PDF] philosophie du développement pdf

[PDF] dissertation philosophie developpement

[PDF] philosophie du développement durable

[PDF] développement et réduction 3ème

[PDF] charge de projet rh

[PDF] chargé de développement rh salaire

[PDF] compétences ressources humaines

[PDF] responsable développement rh salaire

[PDF] développement ressources humaines

[PDF] chargé de développement rh fiche métier

[PDF] indicateur socio économique definition

[PDF] indicateurs de développement humain