[PDF] ALGEBRE LINEAIRE Cours et exercices





Previous PDF Next PDF



Algèbre 3.pdf

09‏/03‏/2019 Voir exercice 3 examen 2014. 4. Résoudre le système différentiel. X ... Chevallet



Cours dAlgèbre I et II avec Exercices CorrigésOM DE VOTRE

est vraie. 3. Exercices Corrigés. Exercice 1. Donner la négation des propositions suivantes : (1) ∀x ∈ IR∃y 



Exercices Corrigés Initiation aux Base de données

Chapitre 1 : Algèbre relationnelle III. Langage SQL. Exercice 1. Soit la base de données relationnelle des vols ...





Cours dAlgèbre 3 et exercices

Les chapitres de ce cours sont illustrés par des exemples d'applications et une série d'exercices est proposée dans chacun d'entre eux



Sujets dexamens algèbre trois

Exercice 1.1.3 Soit E un espace vectoriel réel on rappel qu'un projecteur P de E est un endomorphisme de E qui vérifie l'égalité P ◦ P = P. 1. Montrer que si 



Examens corrigés dAlgèbre Linéaire et Géométrie

Exercice 3. Soit un entier k ⩾ 1. On considère k points représentés par des vecteurs v1



LALGÈBRE LINÉAIRE POUR TOUS

— Notes du cours d'Algèbre linéaire pour les économistes donné en deuxième année de Exercice 1 (Opérations ensemblistes I). — On considère les ensembles ...



[PDF] Algèbre - Exo7 - Cours de mathématiques

3. À la découverte de l'algèbre. La première année d'études supérieures pose ... exercices sans regarder les solutions. Pour vous aider



livre-algebre-1.pdf - Exo7 - Cours de mathématiques

site Exo7 toutes les vidéos correspondant à ce cours ainsi que des exercices corrigés. Au bout du chemin



Examen dalgèbre du 18 juin 2012 durée : 4h Questions de cours

Barême indicatif :question de cours3 points ; exercice 1



Exercices corrigés Initiation aux bases de données

Soit la base de l'extension suivante de la relation Personne : Que valent les expressions suivantes ? Correction de l'exercice 2. 1. Numero Nom. Prenom. 2.



Mathématiques financières EXERCICES CORRIGES

Exercice 3 : Taux. Calculer les taux proportionnels annuels correspondant à un taux de 1% mensuel 3% trimestriel



Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

Puis calculer A-1. Exercice 8 – Appliquer avec précision aux matrices M et N suivantes l'algorithme du cours qui détermine si une matrice est inversible et 



Cours dAlgèbre I et II avec Exercices CorrigésOM DE VOTRE

Algébrique sur les Matrices avec Exercices Corrigés. 57. 1. Espace vectoriel des matrices. 57. 2. Produit de deux matrices. 59. 3. Matrices carrées.



Algèbre et Analyse Recueil dExercices Corrigés

8 mars 2018 cours ; qu'on pourra retrouver en détail dans [8]. ... 1. 1 Logique et Théorie des Ensembles. 3. 1.1 Exercices . ... 13 Examens Algèbre.



ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE

3. Les déterminants. 1. 1. Définition récursive du déterminant . Ces deux références proposent un cours complété d'exercices avec solutions la sec-.



ficall.pdf

Exercice 2. Démontrer que (1 = 2) ? (2 = 3). Correction ?. [000105]. Exercice 3. Soient les quatre assertions suivantes : ( 



Applications linéaires matrices

http://licence-math.univ-lyon1.fr/lib/exe/fetch.php?media=exomaths:exercices_corriges_application_lineaire_et_determinants.pdf

ISPB, Faculté de Pharmacie de Lyon Année 2014 - 2015

Filière ingénieur

3

ème année de pharmacie

ALGEBRE LINEAIRE

Cours et exercices

L. Brandolese

M-A. Dronne

Cours d"algèbre linéaire

1. Espaces vectoriels

2. Applications linéaires

3. Matrices

4. Déterminants

5. Diagonalisation

1

Chapitre 1

Espaces vectoriels

1. Définition

Soit K un corps commutatif (K = R ou C)

Soit E un ensemble dont les éléments seront appelés des vecteurs. On munit E de : · la loi interne " + » (addition vectorielle) : E)yx(,E)y,x(2Î+Î" · la loi externe " . » (multiplication par un scalaire) :

E)x.( K,λE,xÎlÎ"Î"

(E, +, .) est un espace vectoriel (ev) sur K (K-ev) si :

1) (E,+) est un groupe commutatif

· l"addition est associative : )zy(xz)yx(,E)z,y,x(3++=++Î"

· l"addition est commutative :

xyy x,E)y,x(2+=+Î"

· Il existe un élément neutre

E0EÎ tq x0 xE,xE=+Î"

E0x"x"x x tqE x"! E,x=+=+Î$Î" (x" est appelé l"opposé de x et se note (-x))

2) la loi externe doit vérifier :

2E)y,x( K,λÎ"Î",y.x.)yx.(l+l=+l

Ex ,K),λ(2

21Î"Îl",x.x.x).(2121l+l=l+l

Ex ,K),λ(2

21Î"Îl",x)..()x..(2121ll=ll

x1.x E,x=Î"

Propriétés :

Si E est un K-ev, on a :

1)

KλE,xÎ"Î",

EE0ou x0λ0λ.x

2) )x.()x.(x).(-l=l-=l-

Exemple :

Soit K = R et E = Rn. (Rn,+, . ) est un R-ev

1) loi interne :

)x..., ,x,(x x,Rxn21n=Î" et )y..., ,y,(yy ,Ryn21n=Î" )yx..., ,yx,y(xyxnn2211+++=+

2) loi externe :

)x..., ,x,x(.x : R ,Rxn21nlll=lÎl"Î" 2

2. Sous espace vectoriel (sev)

Définition :

Soit E un K-ev et

EFÌ. F est un sev si :

· F ¹ AE

· la loi interne " + » est stable dans F :

F)yx(,F)y,x(2Î+Î"

· la loi externe " . » est stable dans F :

F)x.( K,λF,xÎlÎ"Î"

Remarque : Si E est un K-ev, {}E0 et E sont 2 sev de E

Exercice 1 :

Soit E l"ensemble défini par {}0xx2x/R)x,x,x(E3213

321=-+Î=

Montrer que E est un sev de R

3

Exercice 2 :

Soit E un ev sur K et F

1 et F2 deux sev de E. Montrer que 21FFI est un sev de E

3. Somme de 2 sev

Théorème :

Soit F

1 et F2 deux sev de E. On appelle somme des sev F1 et F2 l"ensemble noté (F1 + F2) défini par :

{}2121Fyet Fy / xxFFÎÎ+=+

On peut montrer que F1 + F2 est un sev de E

Somme directe de sev :

Définition :

On appelle somme directe la somme notée F

1 + F2

E2121

210FFFFFFFF

I Remarque : Si F = E, on dit que F1 et F2 sont supplémentaires

Propriété :

F = F

1 + F2 ssi FzÎ", z s"écrit de manière unique sous la forme z = x + y avec 1FxÎ et 2FyÎ

Exercice 3 :

{}R xavec ,0,0)(xF111Î= et {}2

32322R)x,(x avec )x,x(0,FÎ=

Montrer que F

1 et F2 sont supplémentaires de R3 c"est-à-dire F1 + F2 = R3

3

4. Combinaisons linéaires, familles libres, liées et génératrices

Définition :

Soit E un K-ev et

{}IiixÎ une famille d"éléments de E. On appelle combinaison linéaire de la famille {}IiixÎ, l"expression ∑ Îl

Iiiix avec KiÎl

Définition :

On dit que la famille

{}IiixÎ est libre si Ii 00xiEIiiiÎ"=l⇒=l∑

Définition :

On dit que la famille

{}IiixÎ est liée si elle n"est pas libre : ()()EIiiip10xλ tq0,...,0,...,=¹ll$∑

Définition :

On appelle famille génératrice de E une famille telle que tout élément de E est une combinaison

linéaire de cette famille : ()∑

IiiiIiixλ x tqλ ,Ex

Définition :

On dit que la famille

{}IiixÎ est une base de E si {}IiixÎ est une famille libre et génératrice

Propriété :

On dit que la famille

{}IiixÎ est une base de E ssi ExÎ", x s"écrit de manière unique ∑

Iiiixλx

Démonstration (1) ⇒ (2) (D1)

Exercice 4 :

Soit 2

1R)0,1(eÎ= et 2

2R)1,0(eÎ=. La famille {}21e,e est-elle une base ?

Remarque :

La famille {}n21e,...,e,e avec )1,...,0,0(e),...,0,...,1,0(e),0,...,0,1(en21=== constitue la base canonique

de Rn

Propriétés :

{}x est une famille libre 0x¹Û · Toute famille contenant une famille génératrice est génératrice · Toute sous-famille d"une famille libre est libre · Toute famille contenant une famille liée est liée

· Toute famille

{}p21v,...,v,v dont l"un des vecteurs vi est nul, est liée 4

5. Espace vectoriel de dimension finie

Définitions :

· Soit {}IiixÎ une famille S d"éléments de E. On appelle cardinal de S le nombre d"éléments de S

· E est un ev de dimension finie si E admet une famille génératrice de cardinal fini.

Théorème :

Toutes les bases d"un même ev E ont le même cardinal. Ce nombre commun est appelé la dimension

de E. On note dimE

Corollaire :

Dans un ev de dimension n, on a :

- Toute famille libre a au plus n éléments - Toute famille génératrice a au moins n éléments

Remarque : si dimE = n, pour montrer qu"une famille de n éléments est une base de E, il suffit de

montrer qu"elle est libre ou bien génératrice.

Exercice 5 :

Dans R

3, soit e1= (1,0,0), e2= (1,0,1) et e3= (0,1,2)

Montrer que

{}321e,e,e est une base de R3

Théorème de la base incomplète :

Soit E un ev de dimension finie et L une famille libre de E. Alors il existe une base B de cardinal fini

qui contient L.

6. Caractérisation des sev de dimension finie

Proposition :

Soit E un K-ev de dimension n et F un sev de E :

EdimFdim£

EFEdimFdim=Û=

6.1. Coordonnées d"un vecteur

Définition :

Soit E un K-ev de dimension n et

{}n1x,...,xB= une base de E (c"est-à-dire ExÎ", x s"écrit de manière unique =l= n 1i iixx), les scalaires l1, ...,ln sont appelés les coordonnées de x dans la base B. 5

6.2. Rang d"une famille de vecteurs. Sous-espaces engendrés

Définition :

Soit {}p1x,...,xG= Le sev F des combinaisons linéaires des vecteurs x

1, ..., xp est appelé sous-espace engendré par G et

se note : {}p1x,...,xVectVectGF== =p 1ip p1iiR)λ,...,(λ avec xλx/ExF Remarque : {}{}p1p1x,...,xx,...,xVectFÛ= est une famille génératrice de F

Définition :

La dimension de F s"appelle le rang de la famille G : dimF = rgG

Propriétés : Soit {}p1x,...,xG=

prgG£

Û=prgG G est libre

· On ne change pas le rang d"une famille de vecteurs : - en ajoutant à l"un d"eux une combinaison linéaire des autres - en multipliant l"un d"eux par un scalaire non nul - en changeant l"ordre des vecteurs

6.3. Détermination du rang d"une famille de vecteurs

Théorème :

quotesdbs_dbs4.pdfusesText_8
[PDF] Algèbre : équation differentielles et nombrescomplexes Terminale Mathématiques

[PDF] algèbre bilinéaire exercices corrigés PDF Cours,Exercices ,Examens

[PDF] algèbre bilinéaire exercices corrigés pdf PDF Cours,Exercices ,Examens

[PDF] algèbre des polynomes PDF Cours,Exercices ,Examens

[PDF] Algébre et fONCTION 2nde Mathématiques

[PDF] Algèbre et géometrie dans l'espace 2nde Mathématiques

[PDF] Algebre exercice de dm 4ème Mathématiques

[PDF] algebre exercice dm probleme 4ème Mathématiques

[PDF] algèbre exercices avec solutions PDF Cours,Exercices ,Examens

[PDF] algèbre exercices avec solutions pdf PDF Cours,Exercices ,Examens

[PDF] algebre exercices corrigés PDF Cours,Exercices ,Examens

[PDF] algebre exercices corrigés pdf PDF Cours,Exercices ,Examens

[PDF] algebre exo7 PDF Cours,Exercices ,Examens

[PDF] algèbre financière MATH Terminale Mathématiques

[PDF] algèbre géométrique pdf PDF Cours,Exercices ,Examens