[PDF] [PDF] Algèbre - Exo7 - Cours de mathématiques





Previous PDF Next PDF



Algèbre 3.pdf

09‏/03‏/2019 Voir exercice 3 examen 2014. 4. Résoudre le système différentiel. X ... Chevallet



Cours dAlgèbre I et II avec Exercices CorrigésOM DE VOTRE

est vraie. 3. Exercices Corrigés. Exercice 1. Donner la négation des propositions suivantes : (1) ∀x ∈ IR∃y 



Exercices Corrigés Initiation aux Base de données

Chapitre 1 : Algèbre relationnelle III. Langage SQL. Exercice 1. Soit la base de données relationnelle des vols ...



ALGEBRE LINEAIRE Cours et exercices

22‏/05‏/2014 3. 2. 1 . Ecrire cette matrice. Page 45. 15. Examen d'algèbre linéaire : 1 ère partie. 7 avril 2011. Exercice 1. Soit E l'ensemble des fonctions ...





Cours dAlgèbre 3 et exercices

Les chapitres de ce cours sont illustrés par des exemples d'applications et une série d'exercices est proposée dans chacun d'entre eux



Sujets dexamens algèbre trois

Exercice 1.1.3 Soit E un espace vectoriel réel on rappel qu'un projecteur P de E est un endomorphisme de E qui vérifie l'égalité P ◦ P = P. 1. Montrer que si 



Examens corrigés dAlgèbre Linéaire et Géométrie

Exercice 3. Soit un entier k ⩾ 1. On considère k points représentés par des vecteurs v1



LALGÈBRE LINÉAIRE POUR TOUS

— Notes du cours d'Algèbre linéaire pour les économistes donné en deuxième année de Exercice 1 (Opérations ensemblistes I). — On considère les ensembles ...



livre-algebre-1.pdf - Exo7 - Cours de mathématiques

site Exo7 toutes les vidéos correspondant à ce cours ainsi que des exercices corrigés. Au bout du chemin



Examen dalgèbre du 18 juin 2012 durée : 4h Questions de cours

Barême indicatif :question de cours3 points ; exercice 1



Exercices corrigés Initiation aux bases de données

Soit la base de l'extension suivante de la relation Personne : Que valent les expressions suivantes ? Correction de l'exercice 2. 1. Numero Nom. Prenom. 2.



Mathématiques financières EXERCICES CORRIGES

Exercice 3 : Taux. Calculer les taux proportionnels annuels correspondant à un taux de 1% mensuel 3% trimestriel



Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

Puis calculer A-1. Exercice 8 – Appliquer avec précision aux matrices M et N suivantes l'algorithme du cours qui détermine si une matrice est inversible et 



Cours dAlgèbre I et II avec Exercices CorrigésOM DE VOTRE

Algébrique sur les Matrices avec Exercices Corrigés. 57. 1. Espace vectoriel des matrices. 57. 2. Produit de deux matrices. 59. 3. Matrices carrées.



Algèbre et Analyse Recueil dExercices Corrigés

8 mars 2018 cours ; qu'on pourra retrouver en détail dans [8]. ... 1. 1 Logique et Théorie des Ensembles. 3. 1.1 Exercices . ... 13 Examens Algèbre.



ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE

3. Les déterminants. 1. 1. Définition récursive du déterminant . Ces deux références proposent un cours complété d'exercices avec solutions la sec-.



ficall.pdf

Exercice 2. Démontrer que (1 = 2) ? (2 = 3). Correction ?. [000105]. Exercice 3. Soient les quatre assertions suivantes : ( 



Applications linéaires matrices

http://licence-math.univ-lyon1.fr/lib/exe/fetch.php?media=exomaths:exercices_corriges_application_lineaire_et_determinants.pdf

ALGÈBRE

COURS DE MATHÉMATIQUES

PREMIÈRE ANNÉEExo7

À la découverte de l"algèbreLa première année d"études supérieures pose les bases des mathématiques. Pourquoi se lancer dans une

telle expédition? Déjà parce que les mathématiques vous offriront un langage unique pour accéder à une

multitude de domaines scientifiques. Mais aussi parce qu"il s"agit d"un domaine passionnant! Nous vous

proposons de partir à la découverte des maths, de leur logique et de leur beauté.

Dans vos bagages, des objets que vous connaissez déjà : les entiers, les fonctions... Ces notions en apparence

simples et intuitives seront abordées ici avec un souci de rigueur, en adoptant un langage précis et en

présentant les preuves. Vous découvrirez ensuite de nouvelles théories (les espaces vectoriels, les équations

différentielles,...).

Ce tome est consacré à l"algèbre et se divise en deux parties. La première partie débute par la logique

et les ensembles, qui sont des fondamentaux en mathématiques. Ensuite vous étudierez des ensembles

particuliers : les nombres complexes, les entiers ainsi que les polynômes. Cette partie se termine par l"étude

d"une première structure algébrique, avec la notion de groupe.

La seconde partie est entièrement consacrée à l"algèbre linéaire. C"est un domaine totalement nouveau pour

vous et très riche, qui recouvre la notion de matrice et d"espace vectoriel. Ces concepts, à la fois profonds et

utiles, demandent du temps et du travail pour être bien compris.

Les efforts que vous devrez fournir sont importants : tout d"abord comprendre le cours, ensuite connaître

par cœur les définitions, les théorèmes, les propositions... sans oublier de travailler les exemples et les

démonstrations, qui permettent de bien assimiler les notions nouvelles et les mécanismes de raisonnement.

Enfin, vous devrez passer autant de temps à pratiquer les mathématiques : il est indispensable de résoudre

activement par vous-même des exercices, sans regarder les solutions. Pour vous aider, vous trouverez sur le

site Exo7 toutes les vidéos correspondant à ce cours, ainsi que des exercices corrigés.

Au bout du chemin, le plaisir de découvrir de nouveaux univers, de chercher à résoudre des problèmes... et

d"y parvenir. Bonne route!

Sommaire

1 Logique et raisonnements

1

1 Logique

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Raisonnements

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Ensembles et applications

11

1 Ensembles

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Applications

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Injection, surjection, bijection

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Ensembles finis

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Relation d"équivalence

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Nombres complexes31

1 Les nombres complexes

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Racines carrées, équation du second degré

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Argument et trigonométrie

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Nombres complexes et géométrie

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Arithmétique45

1 Division euclidienne et pgcd

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2 Théorème de Bézout

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Nombres premiers

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Congruences

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Polynômes59

1 Définitions

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2 Arithmétique des polynômes

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3 Racine d"un polynôme, factorisation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Fractions rationnelles

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Groupes71

1 Groupe

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2 Sous-groupes

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3 Morphismes de groupes

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Le groupeZ/nZ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Le groupe des permutationsSn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7 Systèmes linéaires87

1 Introduction aux systèmes d"équations linéaires

. . . . . . . . . . . . . . . . . . . . . . . . . . 87

2 Théorie des systèmes linéaires. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3 Résolution par la méthode du pivot de Gauss

. . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8 Matrices99

1 Définition

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

2 Multiplication de matrices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3 Inverse d"une matrice : définition

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4 Inverse d"une matrice : calcul

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5 Inverse d"une matrice : systèmes linéaires et matrices élémentaires

. . . . . . . . . . . . . . 110

6 Matrices triangulaires, transposition, trace, matrices symétriques

. . . . . . . . . . . . . . . 117

9 L"espace vectorielRn123

1 Vecteurs deRn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

2 Exemples d"applications linéaires

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3 Propriétés des applications linéaires

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

10 Espaces vectoriels137

1 Espace vectoriel (début)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

2 Espace vectoriel (fin)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

3 Sous-espace vectoriel (début)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4 Sous-espace vectoriel (milieu)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5 Sous-espace vectoriel (fin)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6 Application linéaire (début)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7 Application linéaire (milieu)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8 Application linéaire (fin)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

11 Dimension finie167

1 Famille libre

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

2 Famille génératrice

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

3 Base

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

4 Dimension d"un espace vectoriel

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5 Dimension des sous-espaces vectoriels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

12 Matrices et applications linéaires

187

1 Rang d"une famille de vecteurs

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

2 Applications linéaires en dimension finie

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

3 Matrice d"une application linéaire

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

4 Changement de bases

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

13 Déterminants211

1 Déterminant en dimension 2 et 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

2 Définition du déterminant

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

3 Propriétés du déterminant

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

4 Calculs de déterminants

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

5 Applications des déterminants

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 Index

Logique et

raisonnementsChapitre 1

Quelques motivations

•Il est important d"avoir unlangage rigoureux. La langue française est souvent ambigüe. Prenons

l"exemple de la conjonction "ou»; au restaurant "fromage ou dessert» signifie l"un ou l"autre mais pas

les deux. Par contre si dans un jeu de carte on cherche "les as ou les cœurs» alors il ne faut pas exclure

l"as de cœur. Autre exemple : que répondre à la question "As-tu10euros en poche?» si l"on dispose de

15 euros?

Il y a des notions difficiles à expliquer avec des mots : par exemple la continuité d"une fonction est

souvent expliquée par "on trace le graphe sans lever le crayon». Il est clair que c"est une définition peu

satisfaisante. Voici la définition mathématique de la continuité d"une fonctionf:I→Ren un point

x0∈I: ∀ε >0∃δ >0∀x∈I(|x-x0|< δ=⇒ |f(x)-f(x0)|< ε). C"est le but de ce chapitre de rendre cette ligne plus claire! C"est lalogique.

Enfin les mathématiques tentent dedistinguer le vrai du faux. Par exemple "Est-ce qu"une augmentation

de20%, puis de30%est plus intéressante qu"une augmentation de50%?». Vous pouvez penser "oui»

ou "non», mais pour en être sûr il faut suivre une démarche logique qui mène à la conclusion. Cette

démarche doit être convaincante pour vous mais aussi pour les autres. On parle deraisonnement.

Les mathématiques sont un langage pour s"exprimer rigoureusement, adapté aux phénomènes complexes,

qui rend les calculs exacts et vérifiables. Le raisonnement est le moyen de valider - ou d"infirmer - une

hypothèse et de l"expliquer à autrui.

LOGIQUE ET RAISONNEMENTS1. LOGIQUE2

1. Logique

1.1. Assertions

Uneassertionest une phrase soit vraie, soit fausse, pas les deux en même temps.

Exemples :

"Il pleut.» "Je suis plus grand que toi.» " 2+2=4 » " 2×3=7 » "Pour tout x∈R, on a x2⩾0.»

"Pour tout z∈C, on a|z|=1.»SiPest une assertion etQest une autre assertion, nous allons définir de nouvelles assertions construites à

partir dePet deQ.

L"opérateur logique "et»

L"assertion "PetQ» est vraie siPest vraie etQest vraie. L"assertion "P et Q» est fausse sinon.

On résume ceci en unetable de vérité:

P\QVF VVF FFF

FIGURE1.1 - Table de vérité de "P et Q»

Par exemple siPest l"assertion "Cette carte est un as» etQl"assertion "Cette carte est cœur» alors l"assertion

"P et Q» est vraie si la carte est l"as de cœur et est fausse pour toute autre carte.

L"opérateur logique "ou»

L"assertion "PouQ» est vraie si l"une (au moins) des deux assertionsPouQest vraie. L"assertion "Pou

Q» est fausse si les deux assertionsPetQsont fausses.

On reprend ceci dans la table de vérité :

P\QVF VVV FVF

FIGURE1.2 - Table de vérité de "P ou Q»

SiPest l"assertion "Cette carte est un as» etQl"assertion "Cette carte est cœur» alors l"assertion "PouQ»

est vraie si la carte est un as ou bien un cœur (en particulier elle est vraie pour l"as de cœur).

Remarque.

Pour définir les opérateurs "ou», "et» on fait appel à une phrase en français utilisant les motsou,et! Les

tables de vérités permettent d"éviter ce problème.

La négation "non»

L"assertion "nonP» est vraie siPest fausse, et fausse siPest vraie.

LOGIQUE ET RAISONNEMENTS1. LOGIQUE3

PVF nonPFV

FIGURE1.3 - Table de vérité de "non P»

L"implication=⇒

La définition mathématique est la suivante :L"assertion "(non P) ou Q» est notée "P=⇒Q».Sa table de vérité est donc la suivante :

P\QVF VVF FVV FIGURE1.4 - Table de vérité de "P=⇒Q» L"assertion "P=⇒Q» se lit en français "P implique Q». Elle se lit souvent aussi "si P est vraie alors Q est vraie» ou "si P alors Q».

Par exemple :

" 0⩽x⩽25=⇒px⩽5 » est vraie (prendre la racine carrée). "x∈]-∞,-4[ =⇒x2+3x-4>0 » est vraie (étudier le binôme). " sin(θ) =0=⇒θ=0 » est fausse (regarder pourθ=2πpar exemple).

•"2+2=5=⇒p2=2» est vraie! Eh oui, siPest fausse alors l"assertion "P=⇒Q» est toujours

vraie.

L"équivalence⇐⇒

L"équivalenceest définie par :"P⇐⇒Q» est l"assertion "(P=⇒Q) et (Q=⇒P)».

On dira "Pest équivalent àQ» ou "Péquivaut àQ» ou "Psi et seulement siQ». Cette assertion est vraie

lorsquePetQsont vraies ou lorsquePetQsont fausses. La table de vérité est : P\QVF VVF FFV FIGURE1.5 - Table de vérité de "P⇐⇒Q»

Exemples :

Pourx,x′∈R, l"équivalence "x·x′=0⇐⇒(x=0ou x′=0)» est vraie. Voici une équivalencetoujours fausse(quelle que soit l"assertionP) : "P⇐⇒non(P)».

On s"intéresse davantage aux assertions vraies qu"aux fausses, aussi dans la pratique et en dehors de ce

chapitre on écrira "P⇐⇒Q» ou "P=⇒Q» uniquement lorsque ce sont des assertions vraies. Par

exemple si l"on écrit "P⇐⇒Q» cela sous-entend "P⇐⇒Qest vraie». Attention rien ne dit quePetQ

soient vraies. Cela signifie quePetQsont vraies en même temps ou fausses en même temps.

LOGIQUE ET RAISONNEMENTS1. LOGIQUE4Proposition 1.

Soient P,Q,R trois assertions. Nous avons les équivalences (vraies) suivantes : 1.

P ⇐⇒non(non(P))

2.(PetQ)⇐⇒(QetP)

3.(PouQ)⇐⇒(QouP)

4.non(PetQ)⇐⇒(nonP)ou(nonQ)

5.non(PouQ)⇐⇒(nonP)et(nonQ)

6.Pet(QouR)⇐⇒(PetQ)ou(PetR)

7.Pou(QetR)⇐⇒(PouQ)et(PouR)

8.

" P =⇒Q »⇐⇒"non(Q) =⇒non(P)»Démonstration.Voici des exemples de démonstrations :

4.Il suffit de comparer les deux assertions "non(P et Q)» et "(non P)ou(non Q)» pour toutes les valeurs

possibles dePetQ. Par exemple siPest vrai etQest vrai alors "PetQ» est vrai donc "non(P et Q)»

est faux; d"autre part (nonP) est faux, (nonQ) est faux donc "(non P)ou(non Q)» est faux. Ainsi dans

ce premier cas les assertions sont toutes les deux fausses. On dresse ainsi les deux tables de vérités et

comme elles sont égales les deux assertions sont équivalentes. P\QVF VFV FVV FIGURE1.6 - Tables de vérité de "non(P et Q)» et de "(non P)ou(non Q)» 6.

On fait la même chose mais il y a trois variables :P,Q,R. On compare donc les tables de vérité d"abord

dans le cas oùPest vrai (à gauche), puis dans le cas oùPest faux (à droite). Dans les deux cas les deux

assertions "P et(Q ou R)» et "(P et Q)ou(P et R)» ont la même table de vérité donc les assertions

sont équivalentes. Q\RVF VVV FVF Q\RVF VFF FFF 8.

Par définition, l"implication "P=⇒Q» est l"assertion "(nonP) ouQ». Donc l"implication "non(Q) =⇒

quotesdbs_dbs45.pdfusesText_45
[PDF] Algèbre : équation differentielles et nombrescomplexes Terminale Mathématiques

[PDF] algèbre bilinéaire exercices corrigés PDF Cours,Exercices ,Examens

[PDF] algèbre bilinéaire exercices corrigés pdf PDF Cours,Exercices ,Examens

[PDF] algèbre des polynomes PDF Cours,Exercices ,Examens

[PDF] Algébre et fONCTION 2nde Mathématiques

[PDF] Algèbre et géometrie dans l'espace 2nde Mathématiques

[PDF] Algebre exercice de dm 4ème Mathématiques

[PDF] algebre exercice dm probleme 4ème Mathématiques

[PDF] algèbre exercices avec solutions PDF Cours,Exercices ,Examens

[PDF] algèbre exercices avec solutions pdf PDF Cours,Exercices ,Examens

[PDF] algebre exercices corrigés PDF Cours,Exercices ,Examens

[PDF] algebre exercices corrigés pdf PDF Cours,Exercices ,Examens

[PDF] algebre exo7 PDF Cours,Exercices ,Examens

[PDF] algèbre financière MATH Terminale Mathématiques

[PDF] algèbre géométrique pdf PDF Cours,Exercices ,Examens