[PDF] [PDF] fic00159pdf - Exo7 - Exercices de mathématiques





Previous PDF Next PDF



VECTEURS ET REPÉRAGE

Trois points du plan non alignés O I et J forment un repère



repère du plan - AlloSchool

Connaître un repère orthonormé. Calculer la distance entre deux points sur une droite graduée. ... La droite ( ) est l'axe des abscisses.



Distance dun point à une droite distance dun point à un plan

07?/02?/2011 On a donc selon les points de vue des méthodes qui en découlent. Si et c'est le luxe



Exercices de mathématiques - Exo7

Soit P un plan muni d'un repère R(Oi



PRODUIT SCALAIRE DANS LESPACE

Produit scalaire dans un repère orthonormé. 1) Base et repère orthonormé 3) Conséquence : Expression de la distance entre deux points.



Calcul vectoriel – Produit scalaire

sur la droite (AB) est donc H. Les vecteurs AB et AH sont colinéaires Dans un repère orthonormé on considère les points A(3 ; –5)



VECTEURS ET DROITES

dans un repère (O i ( ) un point de la droite D et u ... Un point M(x ; y) appartient à la droite D si et seulement si les vecteurs AM ! "!!! x ? x.



PRODUIT SCALAIRE

et deux points A et B tels que u ! = AB. " !"" . La norme du vecteur u ! notée u !



Polycopié dexercices et examens résolus: Mécanique du point

On se place dans l'espace muni d'un repère orthonormée. En déduire l'équation de la droite (D) tangente au cercle au point P. 4. Soit A le point ...



CHAPITRE 6 CINÉMATIQUE DU SOLIDE 6.1. Coordonnées dun

avec ? la distance entre l'origine du repère et le point H et. #» er le vecteur unitaire porté par la droite. (OH). Le vecteur.



[PDF] Distance dun point à une droite distance dun point à un plan

7 fév 2011 · On a donc selon les points de vue des méthodes qui en découlent Si et c'est le luxe les objets sont dans un repère orthonormal on obtient 



[PDF] Distance de deux points dans un repère orthonormal

SAVOIR CALCULER UNE DISTANCE Exemple : Soient dans un repère orthonormal ( O I J ) les points A B et C de coordonnées



[PDF] La droite dans le plan - AlloSchool

Exercice1 : Le plan est rapporté au Repère orthonormé ( ); ; Oi j Construire les points ( ) 2) déterminer les points d'intersections de la droite (AB)



[PDF] VECTEURS ET REPÉRAGE - maths et tiques

On appelle repère du plan tout triplet (O ? ?) où O est un point et ?et ? sont deux vecteurs non colinéaires - Un repère est dit orthogonal 



[PDF] GÉOMÉTRIE REPÉRÉE - maths et tiques

Dans tout le chapitre on se place dans un repère orthonormé ( ; ? ?) du Méthode : Déterminer une équation de droite à partir d'un point et d'un 



[PDF] Chapitre 2 : Distance point-droite et bissectrices

Exercice 2 5: Reprendre l'exercice 2 3 en utilisant la formule ?(A d) où d est l'équation de BC Exercice 2 6: Calculer la distance du point A à la droite d: a 



[PDF] Chapitre 3 - Coordonnées dun point du plan

3 4 Calcul de distance dans un repère orthornormée Dans un repère orthonormée il est possible d'utiliser les coordonnées pour calculer des dis- tances



[PDF] Géométrie Année 2013 - 2014 - semestre 4

Munir P d'un repère orthonormé R = (O e1 e2) et pour un point M = (x y droite D On notera d(MO) la distance du point M à l'origine du repère



[PDF] fic00159pdf - Exo7 - Exercices de mathématiques

Soit P un plan muni d'un repère R(Oij) les points et les vecteurs sont La distance d'un point M0(x0y0) à une droite D d'équation ax+by+c=0 est 



[PDF] 1 S Le plan muni dun repère

la droite graduée de repère (O I) est l'axe des abscisses ; on le note Norme d'un vecteur et distance de deux points dans un repère orthonormé du plan

  • Comment déterminer la distance d'un point a une droite ?

    ?La distance d'un point à une droite correspond à la longueur du plus court segment séparant le point de la droite. Pour déterminer la distance qui sépare un point d'une droite, il faut déterminer la longueur du segment qui joint perpendiculairement le point à la droite.
  • Comment calculer la distance d'un point a un autre ?

    Pour mesurer la distance entre deux points :

    1Ouvrez Google Maps sur votre ordinateur.2Effectuez un clic droit sur le point de départ.3Sélectionnez Mesurer une distance.4Pour créer un trajet à mesurer, cliquez n'importe où sur la carte. 5Lorsque vous avez terminé, cliquez sur Fermer.
  • Par définition la distance du point A à la droite D est la distance AH. remarque : c'est la plus petite distance entre un point quelconque de la droite D et le point A.
Exo7

Droites du plan ; droites et plans de l"espace

Fiche corrigée par Arnaud Bodin

1 Droites dans le plan

Exercice 1SoitPun plan muni d"un repèreR(O;~i;~j), les points et les vecteurs sont exprimés par leurs coordonnées dans

R. 1.

Donner un v ecteurdirecteur ,la pente une équation paramétrique et une équation cartésienne des droites

(AB)suivantes : (a)A(2;3)etB(1;4) (b)A(7;2)etB(2;5) (c)A(3;3)etB(3;6) 2.

Donner des équations paramétriques et cartésiennes des droites passant par Aet dirigées par~vavec :

(a)A(2;1)et~v(3;1) (b)A(0;1)et~v(1;2) (c)A(1;1)et~v(1;0) 3. Donner des équations paramétriques et cartésiennes des droites définies comme suit : (a) passant par le point (0;4)et de pente 3, (b) passant par le point (2;3)et parallèle à l"axe desx, (c) passant par le point (2;5)et parallèle à la droiteD: 8x+4y=3. On considère le triangleABCdont les côtés ont pour équations(AB):x+2y=3;(AC):x+y=2;(BC):

2x+3y=4.

1.

Donner les coordonnées des points A;B;C.

2. Donner les coordonnées des milieux A0;B0;C0des segments[BC],[AC]et[AB]respectivement. 3. Donner une équation de chaque médiane et vérifier qu"elles sont concourantes. Montrer qu"il existe un pointM0équidistant de toutes les droitesDl.

Exercice 4

Déterminer le projeté orthogonal du pointM0(x0;y0)sur la droite(D)d"équation 2x3y=5 ainsi que son

symétrique orthogonal. Exercice 51.T rouverune équation du plan (P)défini par les éléments suivants. (a)A,BetCsont des points de(P) i.A(0;0;1),B(1;0;0)etC(0;1;0). ii.A(1;1;1),B(2;0;1)etC(1;2;4). (b)Aest un point de(P),~uet~vsont des vecteurs directeurs de(P) i.A(1;2;1),~u(4;0;3)et~v(1;3;1). ii.A(1;0;2),~u(2;1;3)et~v(1;4;5). (c)Aest un point de(P),Dest une droite contenue dans(P) i.A(0;0;0)et(D):x+yz+3=0

4xy+2z=0

ii.A(1;1;0)et(D):8 :x=t y=1+2t z=13t (d)DetD0sont des droites contenues dans(P) i.(D):x+yz+3=0 xy2=0et(D0):3xyz+5=0 x+yz+1=0 ii.(D):x+2yz+1=0 x+3y+z4=0et(D0):2x+y3z+7=0

3x+2y+z1=0

2. Montrer que les représentations paramétriques sui vantesdéfinissent le même plan : 8< :x=2+s+2t y=2+2s+t z=1stet8 :x=1+3s0t0 y=3+3s0+t0 z=12s0 On considère la famille de plans(Pm)m2Rdéfinis par les équations cartésiennes : m

2x+(2m1)y+mz=3

1. Déterminer les plans Pmdans chacun des cas suivants : (a)A(1;1;1)2Pm (b)~n(2;52 ;1)est normal àPm. (c)~v(1;1;1)est un vecteur directeur dePm 2. Montrer qu"il e xisteun unique point Qappartenant à tous les plansPm. 2 1.

Déterminer la distance du point Aau plan(P)

(a)A(1;0;2)et(P): 2x+y+z+4=0. (b)A(3;2;1)et(P):x+5y4z=5. 2. Calculer la distance du point A(1;2;3)à la droite(D):2x+y3z=1 x+z=1 1. On considèrelepointA(2;4;1), lesvecteurs!u(1;1;1);!v(2;2;4),!w(3;1;1)etlerepère(A;!u;!v;!w).

On notex0;y0etz0les coordonnées dans ce repère. Donner les formules analytiques du changement de

repère exprimantx;y;zen fonction dex0;y0;z0. 2.

On considère la droite (D):yz=3

x+y=2. Utiliser le changement de repère pour donner une équation deDdans le repère(A;!u;!v;!w). 3. Donner les formules analytiques du changement de repère in verse. 1. Définir analytiquement la projection orthogonale sur le plan d"équation 2 x+2yz=1. 2. Définir analytiquement la projection orthogonale sur la droite d"équation x+y+z=1

2xz=2.

3. Donner l"e xpressionanalytique de la projection sur le plan (P)contenant le pointC(2;1;1)et ayant pour vecteurs directeurs~u(0;1;1)et~u0(2;0;1), selon la droite(AB), oùA(1;1;0)etB(0;1;3).

Indication pourl"exer cice2 NLes médianes sont les droites(AA0),(BB0),(CC0).Indication pourl"exer cice3 NLadistanced"unpointM0(x0;y0)àunedroiteDd"équationax+by+c=0estdonnéeparlaformuled(M0;D)=

jax0+by0+c0jpa

2+b2.4

Correction del"exer cice1 N1.(a) Un v ecteurdirecteur est !ABdont les coordonnées sont(xBxA;yByA) = (3;1). Pour n"importe quel vecteur directeur~v= (xv;yv)la pente est le réelp=yvx v. La pente est indépendante du choix du vecteurdirecteur. Ontrouveicip=13 . Uneéquationparamétriquedeladroitedevecteurdirecteur ~vpassant parA= (xA;yA)est donnée parx=xvt+xA y=yvt+yA:Donc ici pour le vecteur directeur!AB on trouve l"équation paramétrique x=3t+2 y=t+3 Il y a plusieurs façons d"obtenir une équation cartésienneax+by+c=0.

Première méthode.On sait queA= (xA;yA)appartient à la droite donc ses coordonnées vérifient

l"équationaxA+byA+c=0, idem avecB. On en déduit le système2a+3b+c=0 a+4b+c=0:Les

solutions s"obtiennent à une constante multiplicative près, on peut fixera=1 et on trouve alors

b=3 etc=11. L"équation est doncx+3y11=0. (b)

On trouv e~v=!AB= (5;3),p=35

etx=5t7 y=3t2 ainsi x+75 =t y+23 =tOn en déduitx+75 =y+23 ; d"où l"équation 3x+5y+31=0. (c) On trouve~v=!AB=(0;3), ladroiteestdoncverticale(sapenteestinfinie)uneéquationparamétrique estx=3 y=3t+6. Une équation cartésienne est simplement(x=3). 2. (a)

Equation paramétrique

x=3t+2 y=t+1 Troisième méthode.Pour une droite d"équation cartésienneax+by+c=0, on sait que~n= (a;b) est un vecteur normal à la droite et donc~v= (b;a)est un vecteur directeur (car alors~v~n=

0). Réciproquement si~v= (b;a)est un vecteur directeur alors une équation est de la forme

ax+by+c=0 pour une certaine constantecà déterminer. Ici on nous donne le vecteur directeur~v= (3;1)donc on cherche une équation sous la forme x+3y+c=0. Pour trouverc, on utilise queAappartient à la droite doncxA+3yA+c=0, ce qui conduit àc=1. Ainsi une équation de la droite estx+3y=1. (b)

On trouv e2 xy+1=0.

(c)

Droite horizontale d"équation (y=1).

3.

V oicijuste les résultats :

(a)y=3x+4, (b)y=3, (c)

8 x+4y=4 (les droites parallèles à 8x+4y=3 sont de la forme 8x+4y=c).Correction del"exer cice2 N1.Le point Aest l"intersection des droites(AB)et(AC). Les coordonnées(x;y)deAsont donc solutions du

système :x+2y=3 x+y=2donné par les équations des deux droites. La seule solution est(x;y) = (1;1). On a doncA= (1;1). On fait de même pour obtenir le pointB= (1;2)etC= (2;0). 2. Notons A0lemilieude[BC]alorslescoordonnéessetrouventparlaformulesuivanteA0=(xB+xC2 ;yB+yC2 12 ;1). De même on trouveB0= (32 ;12 )etC0= (0;32 5

3.(a) Les médianes ont pour équations : (AA0):(y=1);(BB0):(3x+5y=7);(CC0):(3x+4y=6).

(b)

Vérifions que les trois médianes sont concourantes (ce qui est vrai quelque soit le triangle). On

calcule d"abord l"intersectionI= (AA0)\(BB0), les coordonnées du pointId"intersection vérifient

donc le systèmey=1

3x+5y=7. On trouveI= (23

;1).

Il ne reste plus qu"à vérifier queIappartient à la droite(CC0)d"équation 3x+4y=6. En effet

3xI+4yI=6 doncI2(CC0).

Conclusion : les médianes sont concourantes au pointI= (23

;1).Correction del"exer cice3 NNous savons que la distance d"un pointM0(x0;y0)à une droiteDd"équationax+by+c=0 est donnée par la

formuled(M0;D) =jax0+by0+c0jpa 2+b2. Pour une droiteDlla formule donne :d(M0;Dl) =j(1l2)x0+2ly0(4l+2)jp(1l2)2+4l2.

Analyse.

On cherche un pointM0= (x0;y0)tel que pour toutl,d(M0;Dl) =koùk2Rest une constante.

L"égalitéd(M0;Dl)2=k2conduit à

(1l2)x0+2ly0(4l+2) 2=k2 (1l2)2+4l2

pour toutl2R. Nos inconnues sontx0;y0;k. On regarde l"égalité comme une égalité de deux polynômes en

la variablel.

Pour ne pas avoir à tout développer on raffine un peu : on identifie les termes de plus haut degré enl4:

x

20l4=k2l4doncx20=k2.

En évaluant l"égalité pourl=0 cela donne(x02)2=k2. On en déduit(x02)2=x20dont la seule solution

estx0=1. Ainsik=1 (cark>0). L"égalité pourl= +1 donne(2y06)2=4k2et pourl=1 donne(2y0+2)2=4k2. La seule solution est y 0=2.

Synthèse.Vérifions que le point de coordonnéesM0= (1;2)est situé à une distancek=1 de toutes les droites

D l.

Pour(x0;y0) = (1;2), on trouve :d(M0;Dl) =j(1l2)+4l(4l+2)jp(1l2)2+4l2=jl2+1jp(l2+1)2=jl2+1jjl2+1j=1. DoncM0= (1;2)

est bien équidistant de toutes les droitesDl.Correction del"exer cice4 N(D)est une droite de vecteur normal~n= (2;3). Le projeté orthogonalp(M0)deM0sur(D)est de la forme

M

0+l:~noùlest un réel à déterminer. Le pointM0+l:~na pour coordonnées(x0+2l;y03l).

M

0+l:~n2(D)()2(x0+2l)3(y03l) =5()l=2x0+3y0+513

p(M0)a pour coordonnéesx0+22x0+3y0+513 ;y032x0+3y0+513 ou encorep(M0) =9x0+6y0+1013 ;6x0+4y01513 autrement dits(M0) =M0+2l:~n(pour lelobtenu ci-dessus). Ses coordonnées sont doncs(M0) =x0+42x0+3y0+513 ;y062x0+3y0+513 ou encore5x0+12y0+2013 ;12x05y03013 .Correction del"exer cice5 N6

1.(a) Une équation d"un plan est ax+by+cz+d=0. Si un point appartient à un plan cela donne une

condition linéaire sura;b;c;d. Si l"on nous donne trois point cela donne un système linéaire de

trois équations à trois inconnues (car l"équation est unique à un facteur multplicatif non nul près).

On trouve :

i.x+y+z1=0 ii.

3 x+3y+z7=0

(b)~n=~u^~vest normal au plan. Si~n= (a;b;c)alors une équation du plan estax+by+cz+d=0. On trouve : i.9x+7y+12z17=0 ii.

17 x+13y7z3=0

(c) T rouverdeux points B;Cde la droiteD. Le vecteurs~u=!ABet~v=!ACsont des vecteurs directeurs deP. Procédé ensuite comme la question précédente. On obtient : i. P are xempleB= (0;6;3)etC= (1;0;2)appartiennent àD. On trouve l"équation 4x y+2z=0.quotesdbs_dbs35.pdfusesText_40
[PDF] distance d'un point ? un plan

[PDF] distance d'un point ? une droite démonstration

[PDF] montrer qu'un point appartient ? un plan

[PDF] puissance d'un point par rapport ? un cercle corrigé

[PDF] marquage piste athlétisme 200m

[PDF] plan piste athlétisme 200m

[PDF] dans l'espace muni d'un repère orthonormé on considère : les points a(01-1) et b(-22-1)

[PDF] fenetre sur mur en limite de propriété

[PDF] en leçon de conduite j'ai toujours avec moi

[PDF] distance terre lune parallaxe

[PDF] algorithme de levenshtein

[PDF] correcteur orthographe python

[PDF] edit distance python

[PDF] distance kilometrique entre les communes de guadeloupe

[PDF] radars fixes maroc gps