[PDF] SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES





Previous PDF Next PDF



[PDF] suites arithmetiques et suites geometriques

19 jui. 2011 = n x (n+1) donc : et donc : . Méthode : Calculer la somme des termes d'une suite arithmétique. Vidéo https://youtu.be/WeDtB9ZUTHs.



SUITES GEOMETRIQUES

1) Calculer u2 et u3. 2) Quelle est la nature de la suite (un) ? On donnera son premier terme et sa raison. 3) Exprimer un 



SUITES ET SÉRIES GÉOMÉTRIQUES

Calculer la somme de la série 9 3 1 … Solution. Il s'agit ici d'une série géométrique de raison 1/3 et dont le terme initial est. 9. Il faut aussi identifier 



Suites géométriques 1. Suites géométriques

Il suffit de calculer et de montrer que le quotient vn+1 vn. =Constante. (càd indépendante de n). Cette constante est la raison de la suite géométrique (vn).



Application des suites géométriques aux calculs dintérêts

Application des suites géométriques aux calculs d'intérêts. 1 Calculer le capital accumulé après n mensualités. On verse une somme d'argent fixe chaque mois 



SUITES GÉOMÉTRIQUES

a) Calculer et . b) Quelle est la nature de la suite ( ) ? On donnera son premier terme et sa raison.



Mathématiques Financières Chapitre 0 : Rappel Suites

Donc si Un est une suite arithmétique de premier terme U0 = 2 et de raison r = 3 on peut calculer U(50) par : U(50) = 2 + 50 × 3 = 152. Et en fonction de U(10) 



[PDF] Séries - Exo7 - Cours de mathématiques

Exemple 1. Fixons q ∈ . Définissons la suite (uk)k李0 par uk = qk ; c'est une suite géométrique. Calculer la série correspondant à 10 · S. Simplifier 10 · S ...



LES SUITES

La fonction f est donc strictement croissante sur 0;+∞ . On déduit que la suite (un) est aussi strictement croissante. □ Suite arithmétique. Définition 1.1.3.



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3. Méthode : Calculer la somme des termes d'une suite géométrique.



Modèle mathématique.

SUITES ARITHMÉTIQUES et SUITES GÉOMÉTRIQUES Cette formule permet aussi de calculer la raison d'une suite arithmétique dont on connaît deux termes.



Suites géométriques

Suites géométriques. CASIO. GRAPH 35+ ? Soit (un) la suite géométriques de premier terme u0 = 2 et de raison 12. a ) Calculer u8.



Suites arithmétiques et suites géométriques

5°) Formule permettant de calculer la somme des n premiers termes d'une suite arithmétique : a) S = nombre de termes × premier terme + dernier terme.



SUITES ET SÉRIES GÉOMÉTRIQUES

Montrer que la valeur d'une action produit une suite géométrique. Calculer la valeur de l'action dix ans après son émission. Tracer la courbe des variations 



Chapitre 3 - Suites arithmétiques et géométriques

Calcul du terme de rang n. Soit u une suite géométrique de premier terme u1 et de raison q.Ona: u2 = q ×u1 ; u3 = q ×u2 = q ×q ×u1 = q2u1 ; u4 = q × u3 = 



SUITES GEOMETRIQUES

1) Calculer u2 et u3. 2) Quelle est la nature de la suite (un) ? On donnera son premier terme et sa raison. 3) Exprimer un 



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Si le premier terme est égal à 3 les premiers termes successifs sont : u0 = 3



1 Définition 2 Calcul du terme de rang n

La somme des n + 1 premiers termes de la suite géométrique (qn) de raison q = 1 est : S =1+ q + q2 + ··· + qn = 1 ? qn+1. 1 ? q.



Suites géométriques 1. Suites géométriques

Il suffit de calculer et de montrer que le quotient vn+1 vn. =Constante. (càd indépendante de n). Cette constante est la raison de la suite géométrique (vn) 

1YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frSUITES ARITHMETIQUES ET SUITES GEOMETRIQUES Vidéo https://youtu.be/pHq6oClOylU I. Suites arithmétiques 1) Définition Exemple : Considérons une suite numérique (un) où la différence entre un terme et son précédent reste constante et égale à 5. Si le premier terme est égal à 3, les premiers termes successifs sont : u0 = 3, u1 = 8, u2 = 13, u3 = 18. Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3. La suite est donc définie par : 0

1 3 5 nn u uu

. Définition : Une suite (un) est une suite arithmétique s'il existe un nombre r tel que pour tout entier n, on a : 1nn

uur

. Le nombre r est appelé raison de la suite. Méthode : Démontrer si une suite est arithmétique Vidéo https://youtu.be/YCokWYcBBOk 1) La suite (un) définie par : 79

n un=- est-elle arithmétique ? 2) La suite (vn) définie par : 2 3 n vn=+ est-elle arithmétique ? 1) () 1

7917 979 9799

nn uunn nn

. La différence entre un terme et son précédent reste constante et égale à -9. (un) est une suite arithmétique de raison -9. 2) ()

2 222
1

1332 133 21

nn vvnnnnn n

. La différence entre un terme et son précédent ne reste pas constante. (vn) n'est pas une suite arithmétique. Vidéo https://youtu.be/6O0KhPMHvBA

2YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frPropriété : (un) est une suite arithmétique de raison r et de premier terme u0. Pour tout entier naturel n, on a : 0n

uunr=+

. Démonstration : La suite arithmétique (un) de raison r et de premier terme u0 vérifie la relation 1nn

uur . En calculant les premiers termes : 10 uur=+ 2100

2uururrur=+=++= +

3200

23uururrur=+=++= +

100
(1) nn uuru nrrunr

. Méthode : Déterminer la raison et le premier terme d'une suite arithmétique Vidéo https://youtu.be/iEuoMgBblz4 Considérons la suite arithmétique (un) tel que

u 5 =7 et u 9 =19

. 1) Déterminer la raison et le premier terme de la suite (un). 2) Exprimer un en fonction de n. 1) Les termes de la suite sont de la forme

u n =u 0 +nr

Ainsi 50

57uur=+=

et 90

919uur=+=

. On soustrayant membre à membre, on obtient :

5r-9r=7-19

donc r=3 . Comme u 0 +5r=7 , on a : u 0 +5×3=7 et donc : u 0 =-8 . 2) 0n uunr=+ soit 83 n un=-+× ou encore 38 n un=-

2) Variations Propriété : (un) est une suite arithmétique de raison r. - Si r > 0 alors la suite (un) est croissante. - Si r < 0 alors la suite (un) est décroissante. Démonstration :

u n+1 -u n =u n +r-u n =r . - Si r > 0 alors u n+1 -u n >0 et la suite (un) est croissante. - Si r < 0 alors u n+1 -u n <0 et la suite (un) est décroissante. Exemple : Vidéo https://youtu.be/R3sHNwOb02M

3YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frLa suite arithmétique (un) définie par

u n =5-4n

est décroissante car de raison négative et égale à -4. 3) Représentation graphique Les points de la représentation graphique d'une suite arithmétique sont alignés. Exemple : On a représenté ci-dessous la suite de raison -0,5 et de premier terme 4. II. Suites géométriques 1) Définition Exemple : Considérons une suite numérique (un) où le rapport entre un terme et son précédent reste constant et égale à 2. Si le premier terme est égal à 5, les premiers termes successifs sont : u0 = 5, u1 = 10, u2 = 20, u3 = 40. Une telle suite est appelée une suite géométrique de raison 2 et de premier terme 5. La suite est donc définie par :

u 0 =5 u n+1 =2u n

Vidéo https://youtu.be/WTmdtbQpa0c Définition : Une suite (un) est une suite géométrique s'il existe un nombre q tel que pour tout entier n, on a :

u n+1 =q×u n . Le nombre q est appelé raison de la suite.

4YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frMéthode : Démontrer si une suite est géométrique Vidéo https://youtu.be/YPbEHxuMaeQ La suite (un) définie par :

u n =3×5 n est-elle géométrique ? u n+1 u n

3×5

n+1

3×5

n 5 n+1 5 n =5 n+1-n =5

. Le rapport entre un terme et son précédent reste constant et égale à 5. (un) est une suite géométrique de raison 5 et de premier terme

u 0 =3×5 0 =3

. Exemple concret : On place un capital de 500€ sur un compte dont les intérêts annuels s'élèvent à 4%. Chaque année, le capital est multiplié par 1,04. Ce capital suit une progression géométrique de raison 1,04. On a ainsi : u

1 =1,04×500=520 u 2 =1,04×520=540,80 u 3 =1,04×540,80=562,432

De manière générale : u

n+1 =1,04×u n avec u 0 =500 On peut également exprimer un en fonction de n : u n =500×1,04 n

Propriété : (un) est une suite géométrique de raison q et de premier terme u0. Pour tout entier naturel n, on a : 0

n n uuq=×

. Démonstration : La suite géométrique (un) de raison q et de premier terme u0 vérifie la relation

u n+1 =q×u n . En calculant les premiers termes : u 1 =q×u 0 u 2 =q×u 1 =q×q×u 0 =q 2 ×u 0 u 3 =q×u 2 =q×q 2 ×u 0 =q 3 ×u 0 u n =q×u n-1 =q×q n-1 u 0 =q n ×u 0

. Méthode : Déterminer la raison et le premier terme d'une suite géométrique Vidéo https://youtu.be/wUfleWpRr10 Considérons la suite géométrique (un) tel que

u 4 =8 et u 7 =512

. Déterminer la raison et le premier terme de la suite (un). Les termes de la suite sont de la forme

u n =q n ×u 0 Ainsi u 4 =q 4 ×u 0 =8 et u 7 =q 7 ×u 0 =512

5YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frAinsi :

u 7 u 4 q 7 ×u 0 q 4 ×u 0 =q 3 et u 7 u 4 512
8 =64 donc q 3 =64

. On utilise la fonction racine troisième de la calculatrice pour trouver le nombre qui élevé au cube donne 64. Ainsi

q=64 3 =4 Comme q 4 ×u 0 =8 , on a : 4 4 ×u 0 =8 et donc : u 0 1 32

. 2) Variations Propriété : (un) est une suite géométrique de raison q et de premier terme non nul u0. Pour

u 0 >0

: - Si q > 1 alors la suite (un) est croissante. - Si 0 < q < 1 alors la suite (un) est décroissante. Pour

u 0 <0

: - Si q > 1 alors la suite (un) est décroissante. - Si 0 < q < 1 alors la suite (un) est croissante. Démonstration dans le cas où u0 > 0 : 1

1000
(1) nnn nn uuququuqq . - Si q > 1 alors u n+1 -u n >0 et la suite (un) est croissante. - Si 0 < q < 1 alors u n+1 -u n <0

et la suite (un) est décroissante. Exemple : Vidéo https://youtu.be/vLshnJqW-64 La suite géométrique (un) définie par

u n =-4×2 n

est décroissante car le premier terme est négatif et la raison est supérieure à 1. Remarque : Si la raison q est négative alors la suite géométrique n'est pas monotone. Horsducadredelaclasse,aucunereproduction,mêmepartielle,autresquecellesprévuesàl'articleL122-5ducodedelapropriétéintellectuelle,nepeutêtrefaitedecesitesansl'autorisationexpressedel'auteur.www.maths-et-tiques.fr/index.php/mentions-legales

6YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frRÉSUMÉS (un) une suite arithmétique - de raison r - de premier terme u0. Exemple : r=-0,5

et u 0 =4

Définition

u n+1 =u n +r u n+1 =u n -0,5 La différence entre un terme et son précédent est égale à -0,5. Propriété u n =u 0 +nr u n =4-0,5n Variations Si r > 0 : (un) est croissante. Si r < 0 : (un) est décroissante. r=-0,5<0

La suite (un) est décroissante. Représentation graphique Remarque : Les points de la représentation graphique sont alignés. (un) une suite géométrique - de raison q - de premier terme u0. Exemple : q=2

et u 0 =-4

Définition

u n+1 =q×u n u n+1 =2×u n Le rapport entre un terme et son précédent est égal à 2. Propriété u n =u 0 ×q n u n =-4×2 n

Variations Pour

u 0 >0 : Si q > 1 : (un) est croissante. Si 0 < q < 1 : (un) est décroissante. Pour u 0 <0 : Si q > 1 : (un) est décroissante. Si 0 < q < 1 : (un) est croissante. u 0 =-4<0 q=2>1

La suite (un) est décroissante. Représentation graphique Remarque : Si q < 0 : la suite géométrique n'est ni croissante ni décroissante.

quotesdbs_dbs50.pdfusesText_50
[PDF] calculer vitesse instantanée 2nde

[PDF] calculs commerciaux bts muc

[PDF] calculs d'incertitudes physique exercices

[PDF] calculus

[PDF] calendar evaluare 2 4 6 2018

[PDF] calendar evaluare nationala 2 4 6 2018

[PDF] calendar evaluare nationala 2017-2018

[PDF] calendar evaluare nationala 2018

[PDF] calendar evaluare nationala ii iv vi 2017

[PDF] calendar simulare bac 2018

[PDF] calendar simulare evaluare nationala 2018

[PDF] calendar simulari bac 2018

[PDF] calendario 2017

[PDF] calendario 2018

[PDF] calendario de noviembre