[PDF] Physique terminale S 12 avr. 2019 La trajectoire





Previous PDF Next PDF



[PDF] ANNALES SCIENCES PHYSIQUES Terminale D - Faso e [PDF] ANNALES SCIENCES PHYSIQUES Terminale D - Faso e

Les contenus abordés en classe de terminale D se présentent conformément au tableau légers s'unissent au cours d'un choc pour donner un noyau plus lourd ...



PHYSIQUE-CHIMIE- TECHNOLOGIE

TOMASINO et al. ➢ Sciences physiques. Rappels de Cours et exercices corrigés. Collection Union Bac. Terminales D C et E. ➢ Physique Terminale 



Cours de Physique Nucléaire

Si compare les énergies en jeu au sein des atomes et des noyaux d'atomes on observe que l'énergie de liaison des électrons au noyau est environ un million de 



Exercices corrigés de Physique Terminale S

terrestre en cours d'éruption. Le panache de l'éruption constitué de blocs de lave



Cours doptique géométrique – femto-physique.fr

Cours d'optique géométrique – femto-physique.fr. JIMMY ROUSSEL professeur S. C. F. S miroir concave. C. F. S miroirs convexes. C. F. S. FIGURE 2.12 – ...



PHYSIQUE

Page 1. Terminales C D



Terminale S PHYSIQUE - CHIMIE FICHES RESUMES DE COURS

avec d en m et t en s. Page 9. Thierry CHAUVET. Terminale S - Page 7 sur 44. Physique - Chimie - 



Physique terminale S

1 août 2013 c) Grâce à la 2e loi de Newton calculer la norme de la force de frottement solide. 2) Le livre glisse sur 60 cm. Calculer au cours de ce ...



PHYSIQUE TERMINALE S

Page 1. PHYSIQUE. TERMINALE S. 218 exercices corrigés. ▫ Mécanique (98 cours de son parcours. 2. Calculer le temps mis par la voiture pour faire le ...



Cours de Radioactivité

Le but de ce cours est de permettre aux étudiants qui seront amenés à utiliser des sources radioactives • de déchiffrer le contenu physique d'un diagramme de ...



ANNALES SCIENCES PHYSIQUES Terminale D

Les contenus abordés en classe de terminale D se présentent légers s'unissent au cours d'un choc pour donner un noyau plus lourd. Exemple :.



PHYSIQUE

Le cours a été conçu selon le projet pédagogique suivant : Sujets d'examen – Baccalauréat Physique – Séries D TI .



Cours doptique géométrique – femto-physique.fr

Cours d'optique géométrique – femto-physique.fr. JIMMY ROUSSEL professeur agrégé à l'Ecole Nationale Supérieure de Chimie de.



Physique terminale S

12 avr. 2019 La trajectoire du point M est donc une droite d'équation y = 3x ? 5 ... a) Calculer les coordonnées du vecteur vitesse au cours du temps.



SCIENCES PHYSIQUE CHIMIQUE ET TECHNOLOGIE

en sciences physique chimique et technologie. 1 -3 Relations entre le programme des SPCT de la classe de Terminale D et les autres programmes du même cours 



Physique terminale S

1 août 2013 c) Grâce à la 2e loi de Newton calculer la norme de la force de frottement solide. 2) Le livre glisse sur 60 cm. Calculer au cours de ce ...



Cinématique et dynamique du point matériel (Cours et exercices

École Normale Supérieure d'Oran. 1ière année PEM PES Sciences Exactes. II. Calcul vectoriel. 1. Introduction : On classe les grandeurs physiques suivant 



Physique terminale S

9 nov. 2018 Définition 1 : On appelle diffraction le phénomène au cours duquel une onde qui traverse une petite ouverture ou rencontre un petit objet ...



espaceacademique.com

Documentation : Livres de Physique AREX Terminale C et D Plan du cours : ... I) Mise en évidence expérimentale du phénomène d'auto - induction.



espaceacademique.com

Documentation : Livres de Physique AREX Terminale C et D Eurin-gié Terminale. D. Guide pédagogique et Programme. Amorce : Plan du cours : I) Décharge d'un 



[PDF] [PDF] ANNALES SCIENCES PHYSIQUES Terminale D

I GENERALITES Les contenus abordés en classe de terminale D se présentent conformément au tableau suivant : MECANIQUE



Terminale D physique Cours pdf

Cours Terminale D physique pdf ANNALES SCIENCES PHYSIQUES Terminale D - Faso e-Education PHYSIQUE NUCLEAIRE Chapitre 11 : Le noyau atomique



Physique complet terminale d Cours pdf

Cours Physique complet terminale d pdf ANNALES SCIENCES PHYSIQUES Terminale D - Faso e-Education PHYSIQUE NUCLEAIRE Chapitre 11 : Le noyau atomique



[PDF] PHYSIQUE-CHIMIE- TECHNOLOGIE

Sciences physiques Rappels de Cours et exercices corrigés Collection Union Bac Terminales D C et E ? Physique Terminale S Collection DURANDEAU 1995



Cours de Physiques Terminale D - fomesoutracom

Dossier Cours de Physiques Terminale D ; pdf Cours PC Tle D&C ecole online by Tehua pdf (2126 téléchargements) Populaires Télécharger ; pdf Chapitre 11 : Circuit 



[PDF] PHYSIQUE - simoeducation

Inspirée de la pédagogie nouvelle la conception de ce livre se fonde sur deux outils à savoir : le cours et les exercices corrigés Le cours a été conçu selon 



Terminale Spé - Site de sciences physiques de MSuet

Terminale Spé Télécharger Cours Terminale Spé (nouveau programme) livre-TS-spé-2020-2021 pdf Document Adobe Acrobat 5 5 MB





[PDF] Exercices corrigés de Physique Terminale S - chaurandfr

Ce livre regroupe l'ensemble des exercices donnés à mes élèves de Terminale S tronc commun en Physique lors de l'année scolaire 2006-2007 La présentation



Physique - Chimie - Lycée Numérique: Tous les cours

Cours de physique-chimie de la classe de terminale C 1 (actuel); 2 · » Page suivante · Leçon1: Les alcools · Leçon 2: Composés carbonylés: aldéhydes et 

  • Quel est le programme de physique en terminale ?

    COURS DE PHYSIQUE-CHIMIE
    Le programme de spécialité Physique-Chimie en terminale générale s'organise autour de 4 thèmes étudiés au programme de première : Constitution et transformations de la matière, Mouvement et interactions, L'énergie : conversions et transferts, et Ondes et signaux.
  • Comment comprendre la physique terminale ?

    Faites des exercices simples
    Evitez donc de vous jeter dessus immédiatement après avoir révisé votre cours. Vous devez plutôt vous tourner vers de « petits » exercices d'applications sans pièges ni raisonnements inhabituels, afin d'assimiler la mise en œuvre de ce que vous venez d'apprendre.
  • Comment être fort en physique ?

    Pour résoudre un problème, faites un schéma et définissez, lorsque ce n'est pas fait dans l'énoncé, des notations sans ambiguïté. Distinguez les données et le résultat demandé ; les lois physiques reliant ces données et ce résultat vous conduiront à "la formule" qui permet la résolution de la question.
  • Quelle est l'importance de la physique ? La physique permet de comprendre, de prédire et donc de contrôler la matière.

DERNIÈRE IMPRESSION LE12 avril 2019 à 18:16

Chapitre 5

Les lois de la mécanique et ses outils

Table des matières

1 Les référentiels et repères2

2 Les grandeurs de l"évolution2

2.1 Le vecteur de position. . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Le vecteur vitesse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Le vecteur accélération. . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4 Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Quelques mouvements classiques5

3.1 Le mouvement rectiligne uniforme. . . . . . . . . . . . . . . . . . . 5

3.2 Le mouvement uniformement varié. . . . . . . . . . . . . . . . . . 6

3.3 Le mouvement circulaire uniforme. . . . . . . . . . . . . . . . . . . 6

3.4 Le mouvement circulaire non uniforme. . . . . . . . . . . . . . . . 7

4 Les forces usuelles8

4.1 Le poids (force de champ). . . . . . . . . . . . . . . . . . . . . . . . 8

4.2 La réaction (force de contact). . . . . . . . . . . . . . . . . . . . . . 8

4.3 Tension d"un fil (force de contact). . . . . . . . . . . . . . . . . . . . 8

4.4 La poussée d"Archimède. . . . . . . . . . . . . . . . . . . . . . . . . 9

4.5 La force gravitationnelle (de Newton, force de champ). . . . . . . . 9

4.6 La force électrostatique (de Coulomb, force de champ). . . . . . . . 9

5 Les lois de Newton10

5.1 Première loi ou principe d"inertie. . . . . . . . . . . . . . . . . . . . 10

5.2 Deuxième loi ou principe fondamental de la dynamique. . . . . . 10

5.3 Troisième loi ou principe de l"action et de la réaction. . . . . . . . . 11

5.4 Application des lois de Newton. . . . . . . . . . . . . . . . . . . . . 11

PAUL MILAN1 PHYSIQUE-CHIMIE. TERMINALES

TABLE DES MATIÈRES

1 Les référentiels et repères

Définition 1 :On appelleréférentielun objet par rapport auquel on étudie un mouvement. On distingue trois types de référentiel : •Leréférentiel terrestre: le solide de référence est un objet fixe à la surface de la Terre. Les trois axes sont, par exemple, la verticale, les axes est-ouest et nord-sud. Ce référentiel est adapté à l"étude des mouvements de faible amplitude et de courte durée à la surface de la Terre tels que les mouve- ments étudiés dans un laboratoire. •Leréférentiel géocentrique: le solide de référence est le centre de la Terre. Les trois axes sont dirigés vers trois étoiles fixes. Un tel référentiel subit le mouvement de révolution de la Terre autour du Soleil mais pas le mou- vement de rotation de la Terre autour de l"axe des pôles. Il est adapté à l"étude du mouvement des satellites en orbite autour de la Terre. •Leréférentiel héliocentrique: le solide de référence est le centre du So- leil. Les trois axes sont les mêmes que ceux du référentiel géocentrique, dirigées vers trois étoiles fixes. Il est adapté à l"étude des astresen orbite autour du Soleil. Définition 2 :Pour les mouvements dans l"espace, on associe au référentiel un repère cartésien(O,?ı,??,?k)défini par une origine et trois vecteurs unitaires deux à deux perpendiculaires. On réduit ce repère à (O,?ı,??)pour un mouvement plan et par (O,?ı)pour un mouvement rectiligne.

2 Les grandeurs de l"évolution

2.1 Le vecteur de position

Définition 3 :Tout objet ponctuel M dans l"espace, est repéré par trois coor- donnéesx,y,z, fonction du tempst, dans le repère(O,?ı,??,?k)associé au référen- tiel. On définit alors levecteur position--→OM et la distance OM par :

OM=x(t)?ı+y(t)??+z(t)?kOM=?

x2(t) +y2(t) +z2(t) Les fonctionsx(t),y(t)etz(t)sont appeléeséquations horairesdu mouvement du point M. La courbe décrite par M en fonction du temps est appeléetrajectoiredu point M Exemple :Un point M a pour équations horaires dans le référentiel terrestre : x(t) =t+1,y(t) =3t-2 etz(t) =2. a) Décrire la trajectoire du point M b) Déterminer la distance OM à la datet=3 s

PAUL MILAN2 PHYSIQUE-CHIMIE. TERMINALES

2. LES GRANDEURS DE L"ÉVOLUTION

a) Pour déterminer la trajectoire du point M, il faut éliminer le temps en déter- minant une relation entrex,yetz. Par exemple, on exprimeten fonction de x:t=x-1 que l"on remplace dans l"expression dey. On obtient alors : ?y=3(x-1)-2 z=2??y=3x-5 z=2 La trajectoire du point M est donc une droite d"équationy=3x-5 dans le plan d"altitude 2 b) Pour déterminer la distance OM, il faut calculer la norme du vecteur--→OM à la datet=3 s. On trouve alors M(4;7;2), d"où : OM=?

42+72+22=⎷69?8,31 m

2.2 Le vecteur vitesse

Définition 4 :On définit le vecteur vitesse?vcomme la dérivée du vecteur de position en fonction du temps. v=d--→OM dtsoit?v=dxdt?ı+dydt??+dzdt?k Le vecteur vitesse est toujours tangent à la trajectoire Remarque :On utilise de préférence la notation différentielle pour la dérivée, plutôt que la notation mathématiquex?(t),y?(t)etz?(t), rappelant ainsi que la vi- tesse est obtenue comme le rapport d"une variation de position sur unevariation du temps. vm: vm=---→OM2----→OM1 Si l"on veut connaître l"intensité de la vitesse, il suffit de prendre la norme du vecteur vitesse : v=||?v||=? ?dx dt? 2 +?dydt? 2 +?dzdt? 2 Exemple :Un point M a pour équations horaires dans le référentiel terrestre : x(t) =2t2-3t+1,y(t) =3t-2 etz(t) =2. a) Calculer les coordonnées du vecteur vitesse au cours du temps b) Déterminer la vitesse du point M à l"instantt=5 s

PAUL MILAN3 PHYSIQUE-CHIMIE. TERMINALES

TABLE DES MATIÈRES

a) On dérive les coordonnées du point M en fonction du temps, on obtient alors : v= (4t-3 ; 3 ; 0) b) Pour déterminer la vitesse du point M à l"intantt=5 s, il faut calculer la norme du vecteur vitesse à l"instantt=5 s v(5) =?

172+32+02=⎷298?17,26 m.s-1

2.3 Le vecteur accélération

Définition 5 :D"une façon analogue au vecteur vitesse?v, on définit le vecteur accélération ?acomme la dérivée du vecteur vitesse en fonction du temps a=d?v dtsoit?a=dvxdt?ı+dvydt??+dvzdt?k Si on revient au vecteur position, le vecteur accélération est doncla dérivée se- conde du vecteur--→OM en fonction du temps. En utilisant la notation différen- tielle, on obtient : a=d2--→OM dt2soit?a=d2xdt2?ı+d2ydt2??+d2zdt2?k Remarque :La notationd2xdt2qui se lit " dé deuxxsur détdeux » correspond à la dérivée seconde dexen fonction du temps qui s"écrit en mathématiquex??(t) Exemple :Un point M a pour équations horaires dans le référentiel terrestre : x(t) =2t2-3t+1,y(t) =3t-2 etz(t) =2. Déterminer la l"accélération du point M à l"instantt=2 s Il faut dériver deux fois les coordonnées du point M, pour obtenirle vecteur ac- célération a= (4 ; 0 ; 0)soita=4 m.s-2

2.4 Application

Les coordonnées d"un mobile dans le plan

(O,?ı,??), associé au référentiel ter- restre, sont données par :?x(t) =4t-2 y(t) =t2-2t+1 a) Déterminer la position du mobile aux instantst=0 ett=2 s b) Déterminer l"accélération du mobile à l"instantt=10 s c) Établir l"équation cartésienne de la trajectoire du mobile M et en donner une représentation en indiquant le sens de parcours du point M

PAUL MILAN4 PHYSIQUE-CHIMIE. TERMINALES

3. QUELQUES MOUVEMENTS CLASSIQUES

a) On détermine les coordonnées du point M aux instantt=0 ett=2 s --→OM(0) = (-2 ; 1)et--→OM(2) = (6 ; 1) b) Pour déterminer l"accélération à l"instantt=10 s, il faut dériver deux fois le vecteur position : v= (4 ; 2t-2)et?a= (0 ; 2) L"accélération est donc constante donca(10) =2 m.s-2 c) Pour déterminer l"équation carté- sienne de la trajectoire, il faut éliminer tdes équations horaires. De l"expres- sion dex(t), on a :t=x+2

4que l"on

remplace dans l"expression dey(t)en remarquant que : t

2-2t+1= (t-1)2

y=?x+2 4-1? 2 =?x+2-44? 2 (x-2)2

16=116x2-14x+14

1 2 3 4 5 6 7 8 9-1-20

-11 23
?M(0)? M(2) ?v(0)? v(2) ?a(0)?a(2) trajectoire La trajectoire est donc une parabole de sommet S(2;0). Pour connaître le sens du parcours il suffit de repérer les points M(0) et M(2).

3 Quelques mouvements classiques

3.1 Le mouvement rectiligne uniforme

Définition 6 :On appelle mouvement rectiligne uniforme un mouvement dans lequel le mobile se déplace sur une droite à vitesse constante. Si le mobile M(x(t);0;0)se déplace sur l"axe Ox, on a alors le schéma suivant : Ox ?x 0M(0) ?M(t) x(t)?v?v Le vecteur vitesse est alors constant :?v=Cte car sa norme et son sens sont constants (trajectoire rectiligne). Le vecteur accélération ?aest donc nul?a=?0. Si à t=0 le mobile se trouve à l"abscissex0et en appelantvl"intensité de la vitesse, on obtient l"équation horaire suivante : x(t) =vt+x0

PAUL MILAN5 PHYSIQUE-CHIMIE. TERMINALES

TABLE DES MATIÈRES

3.2 Le mouvement uniformement varié

Définition 7 :On appelle mouvement rectiligne uniformément varié un mou- vement dans lequel le mobile se déplace sur une droite avec une accélération contante.

Deux cas peuvent se présenter :

•L"accélération et la vitesse ont le même sens :?v·?a>0. Le mouvement est alors uniformément accéléré •L"accélération et la vitesse ont des sens contraires :?v·?a<0. Le mouve- ment est alors uniformément retardé Si le mobile M(x(t);0;0)se déplace sur l"axe Ox, on a alors le schéma suivant : Ox ?x 0M(0) ?M(t) x(t)?a?v0?a?v(t) Le vecteur accélération est alors constant :?a=Cte car sa norme et son sens sont constants (trajectoire rectiligne). Pour trouver l"équation horaire, il faut intégrer deux fois le vecteur accélération a x(t) =a?vx(t) =at+v0?x(t) =1

2at2+v0t+x0

Remarque :v0etx0sont les constante d"intégration. Exemple :Soit un mobile M subissant une accélération contante sur l"axe Ox tel quea=4 m.s-2. On suppose qu"àt=0 s, le point M est immobile en O. Déterminer la distance parcourue par M à l"instantt=5 s. Comme le mobile M est immobile en O àt=0 s, alors les constantes d"intégration sont nulles :v0=0 m.s-1etx0=0 m. On a alors l"équation horaire suivante : x(t) =1

2at2=2t2

Le mobile aura parcouru la distancex(5)à l"instantt=5 s, soit : x(5) =2×25=50 m

3.3 Le mouvement circulaire uniforme

Définition 8 :On appelle mouvement circulaire uniforme un mouvement circulaire dont le module de la vitesse est constante. Remarque :Le vecteur vitesse ici n"est pas nul car la direction de ce vecteur varie dans le temps. On a donc : v=Cte et?v?=Cte Si le point M se déplace dans le plan Oxysur un cercle de centre O et de rayon R, on a alors la figure suivante :

PAUL MILAN6 PHYSIQUE-CHIMIE. TERMINALES

3. QUELQUES MOUVEMENTS CLASSIQUES

Si le module du vecteur vitesse est

constant, on peut montrer que : •l"accélération est dirigée vers O :l"accélération est centripède •on a la relation entre l"accéléra-tion et le vitesse suivante : a=v2 R O? M(t)

M(0)θ=ωt

?v ?a xy Démonstration :Montrons que dans un mouvement circulaire uniforme, l"ac- célération est centripède (dirigée vers le centre du cercle). Supposons qu"àt=0 s le point M soit sur l"axe Ox. À un instantt?=0, le point M est repéré par l"angleθsur le cercle. Comme le mouvement est uniforme, la vitesse angulaireωest constante. On a donc :

θ=ωt. Les équations horaires sont donc :

OM?????x(t) =Rcosθ=Rcosωt

y(t) =Rsinθ=Rsinωt En dérivant une fois, on obtient les coordonnées du vecteur vitesse, puis une seconde fois le vecteur accélération : v?????v x(t) =-Rωsinωt v y(t) =Rωcosωtet?a?????a x(t) =-Rω2cosωt a y(t) =-Rω2sinωt

On remarque que :

?a=-ω2--→OM . L"accélération est dirigé vers le centre du cercle. L"accélération est donc centripède. Calculons les normes des vecteurs vitesse et accélération : v=? v2x+v2y=?R2ω2(sin2ωt+cos2ωt) =Rω a=? a2x+a2y=?R2ω4(cos2ωt+sin2ωt) =Rω2

On a alors :a=v2

R

3.4 Le mouvement circulaire non uniforme

Dans un mouvement circulaire non uniforme, l"accélération tangentielle n"est pas nulle. Si le point M se déplace dans le plan Oxysur le cercle de centre O et de rayon R, On a le schéma suivant :

PAUL MILAN7 PHYSIQUE-CHIMIE. TERMINALES

TABLE DES MATIÈRES

On peut utiliser un repère de Frenet

(M(t) ,?τ,?n). Dans ce repère, on décom- pose le vecteur accélération en accéléra- tion normaleaNet accélération tangen- tielleaT. Comme le mouvement n"est pas uniforme, la norme de la vitesse n"est pas constante et donc l"accéléra- tion tangentielle n"est pas nulle. On a alors comme vecteur accélération : a=aT?τ+aN?n=dv dt?τ+v2R?n

L"accélération normale a la même ex-

presion que dans le mouvement uni- forme. O? M(t)

M(0)θ

-→v aNa T n xy

4 Les forces usuelles

4.1 Le poids (force de champ)

Dans le référentielle terrestre, tout corps de massemest soumis au champ de pesanteur ?g. Cette force correspond au poids du corps :

•origine : centre de gravité

•direction : verticale

•sens : vers le bas

•norme :P=mgavecg=?9.81 m.s-2

4.2 La réaction (force de contact)

La force de réaction du sol

-→R en cas de frottement possède deux composantes : unecomposantenormaleausol-→RNqui ne travaille pas et une composante pa- rallèle au sol?fdans le sens contraire au déplacement (force de frottement) -→R=?f+-→RN ??f -→RN -→R

4.3 Tension d"un fil (force de contact)

La force de tension-→T d"un fil est une

force qui s"exerce par un fil sur un sys- tème. Ses caractéristiques sont : •origine : point du système encontact avec le fil

•direction : le fil

•sens : du système vers le fil

•norme : T

-→T

PAUL MILAN8 PHYSIQUE-CHIMIE. TERMINALES

4. LES FORCES USUELLES

4.4 La poussée d"Archimède

quotesdbs_dbs20.pdfusesText_26
[PDF] lenseignement du français en algérie pdf

[PDF] méthode point fixe

[PDF] théorème du point fixe terminale

[PDF] cours de français professionnel pdf

[PDF] definition d'un point fixe pompier

[PDF] théorème de point fixe de banach

[PDF] montrer qu une fonction admet un point fixe

[PDF] problèmes de point fixe

[PDF] point fixe exercices corrigés pdf

[PDF] méthode du point fixe matlab

[PDF] methode de point fixe pdf

[PDF] théorème de point fixe de schauder

[PDF] point fixe avion

[PDF] le fos définition

[PDF] le public du fos